論文の概要: NeRF-CA: Dynamic Reconstruction of X-ray Coronary Angiography with Extremely Sparse-views
- arxiv url: http://arxiv.org/abs/2408.16355v1
- Date: Thu, 29 Aug 2024 08:51:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 14:22:45.110014
- Title: NeRF-CA: Dynamic Reconstruction of X-ray Coronary Angiography with Extremely Sparse-views
- Title(参考訳): NeRF-CA : 超軽視的X線冠動脈造影像の動的再構成
- Authors: Kirsten W. H. Maas, Danny Ruijters, Anna Vilanova, Nicola Pezzotti,
- Abstract要約: 2次元X線冠動脈造影(CA)による動的3次元再建(4D)は重要な臨床的問題である。
本報告では4次元CA再建法の第1段階であるNeRF-CAについて紹介する。
- 参考スコア(独自算出の注目度): 1.1999555634662633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic three-dimensional (4D) reconstruction from two-dimensional X-ray coronary angiography (CA) remains a significant clinical problem. Challenges include sparse-view settings, intra-scan motion, and complex vessel morphology such as structure sparsity and background occlusion. Existing CA reconstruction methods often require extensive user interaction or large training datasets. On the other hand, Neural Radiance Field (NeRF), a promising deep learning technique, has successfully reconstructed high-fidelity static scenes for natural and medical scenes. Recent work, however, identified that sparse-views, background occlusion, and dynamics still pose a challenge when applying NeRF in the X-ray angiography context. Meanwhile, many successful works for natural scenes propose regularization for sparse-view reconstruction or scene decomposition to handle dynamics. However, these techniques do not directly translate to the CA context, where both challenges and background occlusion are significant. This paper introduces NeRF-CA, the first step toward a 4D CA reconstruction method that achieves reconstructions from sparse coronary angiograms with cardiac motion. We leverage the motion of the coronary artery to decouple the scene into a dynamic coronary artery component and static background. We combine this scene decomposition with tailored regularization techniques. These techniques enforce the separation of the coronary artery from the background by enforcing dynamic structure sparsity and scene smoothness. By uniquely combining these approaches, we achieve 4D reconstructions from as few as four angiogram sequences. This setting aligns with clinical workflows while outperforming state-of-the-art X-ray sparse-view NeRF reconstruction techniques. We validate our approach quantitatively and qualitatively using 4D phantom datasets and ablation studies.
- Abstract(参考訳): 2次元X線冠動脈造影(CA)による動的3次元再建(4D)は重要な臨床的問題である。
課題としては、スパースビューの設定、スキャン内動作、構造空間や背景閉塞のような複雑な血管形態などがある。
既存のCA再構成手法では、広範なユーザインタラクションや大規模なトレーニングデータセットが必要になることが多い。
一方,ニューラル・レージアンス・フィールド(NeRF)は,自然・医療シーンの高忠実な静的シーンの再構築に成功している。
しかし、最近の研究は、X線血管造影の文脈でNeRFを適用する際に、スパースビュー、背景閉塞、ダイナミックスが依然として課題であることを示した。
一方、自然界における多くの成功作品において、ダイナミックスを扱うためのスパースビュー再構成やシーン分解の規則化が提案されている。
しかし、これらの手法は、課題と背景排除の両方が重要であるCAコンテキストに直接翻訳するわけではない。
本報告では4次元CA再建法の第1段階であるNeRF-CAについて紹介する。
冠動脈の運動を利用してシーンをダイナミックな冠動脈成分と静的な背景に分離する。
このシーンの分解と調整された正規化手法を組み合わせる。
これらの技術は、ダイナミックな構造空間とシーンの滑らかさを強制することにより、冠動脈の背景からの分離を強制する。
これらの手法を一意に組み合わせることで,4つの血管造影シークエンスから4次元再構成を行うことができる。
この設定は臨床ワークフローと一致し、最先端のX線スパースビューNeRF再構成技術より優れている。
我々は,4次元ファントムデータセットとアブレーション研究を用いて,定量的かつ定性的にアプローチを検証する。
関連論文リスト
- TomoGRAF: A Robust and Generalizable Reconstruction Network for Single-View Computed Tomography [3.1209855614927275]
従来の解析的・定性的なCT再構成アルゴリズムは数百の角データサンプリングを必要とする。
我々は,高品質な3Dボリュームを再構成するために,ユニークなX線輸送物理を取り入れた新しいTtomoGRAFフレームワークを開発した。
論文 参考訳(メタデータ) (2024-11-12T20:07:59Z) - Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - HFGS: 4D Gaussian Splatting with Emphasis on Spatial and Temporal High-Frequency Components for Endoscopic Scene Reconstruction [13.012536387221669]
ロボット支援による最小侵襲手術は、手術結果を改善するため、動的シーン再構築の強化による恩恵を受ける。
NeRFはシーン再構成に有効だが、推論速度の遅さとトレーニング期間の長いため適用性が制限されている。
3D Gaussian Splatting (3D-GS) ベースの手法が最近のトレンドとして現れ、高速な推論機能と優れた3D品質を提供する。
本稿では,空間的および時間的周波数の観点からこれらの課題に対処する,変形可能な内視鏡再構成のための新しいアプローチであるHFGSを提案する。
論文 参考訳(メタデータ) (2024-05-28T06:48:02Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
内視鏡的シーンの再構築は、外科手術後の分析から教育訓練まで、様々な医療応用にとって重要な要素である。
変形組織の非常にダイナミックな環境下での移動内視鏡の挑戦的なセットアップに着目する。
複数重重なり合う4次元ニューラルラジアンスフィールド(NeRF)への暗黙的なシーン分離と、再構成とカメラのスクラッチからのポーズを協調的に最適化するプログレッシブ最適化手法を提案する。
これにより、使いやすさが向上し、5000フレーム以上の手術ビデオの処理に間に合うように復元能力を拡張できる。
論文 参考訳(メタデータ) (2024-03-18T19:13:02Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
X線CT(CT)スキャン中、患者を乗せた金属インプラントは、しばしば有害なアーティファクトに繋がる。
既存のディープラーニングベースの手法は、有望な再構築性能を得た。
本稿では,人工物の物理的事前構造に適応するために,配向型畳み込み表現戦略を提案する。
論文 参考訳(メタデータ) (2022-12-26T13:56:12Z) - SNAF: Sparse-view CBCT Reconstruction with Neural Attenuation Fields [71.84366290195487]
神経減衰場を学習し,スパースビューCBCT再構成のためのSNAFを提案する。
提案手法は,入力ビューが20程度しかなく,高再生品質(30以上のPSNR)で優れた性能を実現する。
論文 参考訳(メタデータ) (2022-11-30T14:51:14Z) - A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction [1.8047694351309207]
本研究では,ボリュームCTとMR画像データから心表面メッシュ全体を直接予測する深層学習に基づく新しい手法を提案する。
本手法は,高分解能,高品質の全心臓再建を実現できる有望な性能を示した。
論文 参考訳(メタデータ) (2021-02-16T00:39:43Z) - Limited View Tomographic Reconstruction Using a Deep Recurrent Framework
with Residual Dense Spatial-Channel Attention Network and Sinogram
Consistency [25.16002539710169]
本稿では,同じブロックを複数回積み重ねる新しい繰り返し再構成フレームワークを提案する。
本研究では, 再帰的なブロックの中間出力のシングラムと一致するように, リカレント・フレームワークにインターリーブされたシングラム整合層を構築した。
本アルゴリズムは, 狭角化と狭角化の両面において, 既存の最先端のニューラル手法よりも一貫した, 顕著な改善を実現している。
論文 参考訳(メタデータ) (2020-09-03T16:39:48Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
強い散乱準透明物体の有限角トモグラフィーは困難で、非常に不適切な問題である。
このような問題の状況を改善することにより、アーティファクトの削減には、事前の定期化が必要である。
我々は,新しい分割畳み込みゲート再帰ユニット(SC-GRU)をビルディングブロックとして,リカレントニューラルネットワーク(RNN)アーキテクチャを考案した。
論文 参考訳(メタデータ) (2020-07-21T11:48:22Z) - Weakly-supervised 3D coronary artery reconstruction from two-view
angiographic images [4.722039838364292]
本稿では,3次元冠状動脈モデル構築のための対角的および生成的手法を提案する。
3D完全教師付き学習法と2D弱教師付き学習法により,最先端技術を上回る再現精度を得た。
論文 参考訳(メタデータ) (2020-03-26T11:41:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。