論文の概要: DeepCA: Deep Learning-based 3D Coronary Artery Tree Reconstruction from Two 2D Non-simultaneous X-ray Angiography Projections
- arxiv url: http://arxiv.org/abs/2407.14616v2
- Date: Fri, 13 Dec 2024 23:00:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:49:36.070984
- Title: DeepCA: Deep Learning-based 3D Coronary Artery Tree Reconstruction from Two 2D Non-simultaneous X-ray Angiography Projections
- Title(参考訳): DeepCA:2次元非同時X線アンギオグラフィーによる深層学習による3次元冠動脈再建
- Authors: Yiying Wang, Abhirup Banerjee, Robin P. Choudhury, Vicente Grau,
- Abstract要約: 心臓血管疾患(CVD)は、世界中で最も多い死因である。
CVDの診断において,侵襲的X線冠動脈造影(ICA)は最も重要な画像モダリティの1つである。
ICAは一般的に2Dプロジェクションしか取得しないため、冠動脈の3D形状は解釈が困難である。
本研究では,非定常投射間における非剛性心・呼吸運動の補正を目的とした,emphDeepCAという新しい深層学習パイプラインを提案する。
- 参考スコア(独自算出の注目度): 1.9929038355503754
- License:
- Abstract: Cardiovascular diseases (CVDs) are the most common cause of death worldwide. Invasive x-ray coronary angiography (ICA) is one of the most important imaging modalities for the diagnosis of CVDs. ICA typically acquires only two 2D projections, which makes the 3D geometry of coronary vessels difficult to interpret, thus requiring 3D coronary artery tree reconstruction from two projections. State-of-the-art approaches require significant manual interactions and cannot correct the non-rigid cardiac and respiratory motions between non-simultaneous projections. In this study, we propose a novel deep learning pipeline named \emph{DeepCA}. We leverage the Wasserstein conditional generative adversarial network with gradient penalty, latent convolutional transformer layers, and a dynamic snake convolutional critic to implicitly compensate for the non-rigid motion and provide 3D coronary artery tree reconstruction. Through simulating projections from coronary computed tomography angiography (CCTA), we achieve the generalisation of 3D coronary tree reconstruction on real non-simultaneous ICA projections. We incorporate an application-specific evaluation metric to validate our proposed model on both a CCTA dataset and a real ICA dataset, together with Chamfer $\ell_2$ distance. The results demonstrate promising performance of our DeepCA model in vessel topology preservation, recovery of missing features, and generalisation ability to real ICA data. To the best of our knowledge, this is the first study that leverages deep learning to achieve 3D coronary tree reconstruction from two real non-simultaneous x-ray angiographic projections.
- Abstract(参考訳): 心臓血管疾患(CVD)は、世界中で最も多い死因である。
CVDの診断において,侵襲的X線冠動脈造影(ICA)は最も重要な画像モダリティの1つである。
ICAは一般的に2Dプロジェクションのみを取得するため、冠動脈の3D形状は解釈が難しいため、2つのプロジェクションから3Dの冠状動脈木を再構築する必要がある。
最先端のアプローチでは、重要な手動の相互作用が必要であり、非同時投射間の非剛性心臓と呼吸の動きを補正することはできない。
本研究では,emph{DeepCA}という新しいディープラーニングパイプラインを提案する。
我々は,非剛性運動を暗黙的に補償するために,勾配ペナルティ,潜伏畳み込みトランスフォーマー層,ダイナミックヘビ畳み込み批判を伴い,Wasserstein条件付き逆行性ネットワークを活用し,冠動脈再建を3Dで行う。
冠動脈造影CT (CCTA) からの投影を模擬し, 実非同時ICA投影による3次元冠状動脈再建の一般化を実現した。
CCTAデータセットと実ICAデータセットの両方で提案したモデルと、Chamfer $\ell_2$ distanceを併用して、アプリケーション固有の評価基準を組み込んだ。
その結果, 船舶のトポロジー保存, 特徴の回復, ICAデータへの一般化能力におけるDeepCAモデルの有望な性能を示すことができた。
我々の知る限りでは、この研究は深層学習を活用して2つの実際の非同時X線血管造影像から3次元冠状動脈再建を実現する最初の研究である。
関連論文リスト
- 3DGR-CAR: Coronary artery reconstruction from ultra-sparse 2D X-ray views with a 3D Gaussians representation [13.829610843207746]
3D冠動脈再建は,冠動脈疾患の診断,治療計画,手術ナビゲーションに重要である。
従来の再建技術は、しばしば多くの投射を必要とするが、スパースビューのX線投射からの再構成は、放射線線量を減らす潜在的方法である。
超スパースX線投影による冠動脈再建のための3次元ガウス表現法である3DGR-CARを提案する。
論文 参考訳(メタデータ) (2024-10-01T05:00:47Z) - NeCA: 3D Coronary Artery Tree Reconstruction from Two 2D Projections by Neural Implicit Representation [2.1771042711033997]
2D x線による冠動脈造影は, CVDの診断において最も広く採用されている画像モダリティである。
放射線限界のため、一般的には2つの血管造影プロジェクションのみを取得し、血管形状の限られた情報を提供する。
マルチレゾリューションハッシュエンコーダと差別化可能なコーンビームフォワードプロジェクタ層を用いた暗黙のニューラル表現に基づく,NeCAと呼ばれる自己教師型ディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2024-09-06T20:08:21Z) - 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning [79.60829508459753]
現在の商用デジタルサブトラクション・アンジオグラフィー(DSA)システムは通常、再構築を行うために数百のスキャンビューを要求する。
スパース・ビューDSA画像のダイナミックな血流と不十分な入力は,3次元血管再建作業において重要な課題である。
本稿では,時間に依存しない容器確率場を用いてこの問題を効果的に解くことを提案する。
論文 参考訳(メタデータ) (2024-05-17T11:23:33Z) - Multi-class point cloud completion networks for 3D cardiac anatomy
reconstruction from cine magnetic resonance images [4.1448595037512925]
マルチクラスの心臓解剖学的メッシュを再構築できる新しい完全自動表面再構成パイプラインを提案する。
その鍵となるコンポーネントは、マルチクラスポイントクラウド補完ネットワーク(PCCN)である。
論文 参考訳(メタデータ) (2023-07-17T14:52:52Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - 3D Coronary Vessel Reconstruction from Bi-Plane Angiography using Graph
Convolutional Networks [1.8244763402770727]
3DAngioNetは、2つのビューから2D XCA画像を使用して高速な3Dコンテナメッシュ再構築を可能にする、新しいディープラーニング(DL)システムである。
提案手法は,効率的なB3-UNetセグメンテーションネットワークとプロジェクションジオメトリを用いて粗いメッシュテンプレートを学習し,グラフ畳み込みネットワークを用いて変形する。
論文 参考訳(メタデータ) (2023-02-28T17:46:25Z) - Enforcing connectivity of 3D linear structures using their 2D
projections [54.0598511446694]
本稿では,2次元投影におけるトポロジ認識損失の総和を最小化することにより,結果の3次元接続性を改善することを提案する。
これにより、精度の向上と、アノテーション付きトレーニングデータの提供に必要なアノテーションの労力の削減が図られる。
論文 参考訳(メタデータ) (2022-07-14T11:42:18Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
光音響トモグラフィ(PAT)は、形態学的および機能的組織特性の両方を解決することができる新しいイメージング技術である。
現在の欠点は、従来の2Dプローブによって提供される視野の制限である。
本研究では,外部追跡システムを必要としないPATデータの3次元再構成手法を提案する。
論文 参考訳(メタデータ) (2020-11-10T09:27:56Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z) - Weakly-supervised 3D coronary artery reconstruction from two-view
angiographic images [4.722039838364292]
本稿では,3次元冠状動脈モデル構築のための対角的および生成的手法を提案する。
3D完全教師付き学習法と2D弱教師付き学習法により,最先端技術を上回る再現精度を得た。
論文 参考訳(メタデータ) (2020-03-26T11:41:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。