論文の概要: NeRF-CA: Dynamic Reconstruction of X-ray Coronary Angiography with Extremely Sparse-views
- arxiv url: http://arxiv.org/abs/2408.16355v2
- Date: Wed, 11 Jun 2025 08:37:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:01.533922
- Title: NeRF-CA: Dynamic Reconstruction of X-ray Coronary Angiography with Extremely Sparse-views
- Title(参考訳): NeRF-CA : 超軽視的X線冠動脈造影像の動的再構成
- Authors: Kirsten W. H. Maas, Danny Ruijters, Anna Vilanova, Nicola Pezzotti,
- Abstract要約: 既存のCA再構成手法では、広範なユーザインタラクションや大規模なトレーニングデータセットが必要になることが多い。
NeRFは、これらの要求なしに、自然と医療の文脈で高忠実なシーンを再構築することに成功している。
完全自動4DCA再建に向けた第一歩であるNeRF-CAを導入する。
- 参考スコア(独自算出の注目度): 1.1999555634662633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic three-dimensional (4D) reconstruction from two-dimensional X-ray coronary angiography (CA) remains a significant clinical problem. Existing CA reconstruction methods often require extensive user interaction or large training datasets. Recently, Neural Radiance Field (NeRF) has successfully reconstructed high-fidelity scenes in natural and medical contexts without these requirements. However, challenges such as sparse-views, intra-scan motion, and complex vessel morphology hinder its direct application to CA data. We introduce NeRF-CA, a first step toward a fully automatic 4D CA reconstruction that achieves reconstructions from sparse coronary angiograms. To the best of our knowledge, we are the first to address the challenges of sparse-views and cardiac motion by decoupling the scene into the moving coronary artery and the static background, effectively translating the problem of motion into a strength. NeRF-CA serves as a first stepping stone for solving the 4D CA reconstruction problem, achieving adequate 4D reconstructions from as few as four angiograms, as required by clinical practice, while significantly outperforming state-of-the-art sparse-view X-ray NeRF. We validate our approach quantitatively and qualitatively using representative 4D phantom datasets and ablation studies. To accelerate research in this domain, we made our codebase public: https://github.com/kirstenmaas/NeRF-CA.
- Abstract(参考訳): 2次元X線冠動脈造影(CA)による動的3次元再建(4D)は重要な臨床的問題である。
既存のCA再構成手法では、広範なユーザインタラクションや大規模なトレーニングデータセットが必要になることが多い。
近年,Neural Radiance Field (NeRF) は,これらの要件を満たさずに,自然・医学的文脈における高忠実度シーンの再構築に成功した。
しかし、スパースビュー、スキャン内運動、複雑な血管形態といった課題は、CAデータへの直接的な適用を妨げる。
完全自動4DCA再建に向けた第一歩であるNeRF-CAを導入する。
我々の知る限り、我々は、シーンを動冠動脈と静的背景に分離し、運動の問題を効果的に強度に翻訳することで、スパースビューと心臓運動の課題に最初に取り組む。
NeRF-CAは4DCA再建問題を解決するための最初のステップストーンとして機能し、臨床訓練に必要な4つの血管造影から十分な4D再構成を実現し、また最先端のスパースビューX線NeRFよりも大幅に優れていた。
本研究では, 代表的な4次元ファントムデータセットとアブレーション研究を用いて, 定量的, 定性的にアプローチを検証する。
この領域の研究を加速するために、コードベースを公開しました。
関連論文リスト
- X$^{2}$-Gaussian: 4D Radiative Gaussian Splatting for Continuous-time Tomographic Reconstruction [45.31051025401413]
X$2$-Gaussianは、連続4DCT再構成のための新しいフレームワークである。
動的放射スプラッティングと自己監督型呼吸運動学習を統合している。
従来の手法に比べて9.93dBのPSNR向上と2.25dBの改善を実現している。
論文 参考訳(メタデータ) (2025-03-27T17:59:57Z) - TomoGRAF: A Robust and Generalizable Reconstruction Network for Single-View Computed Tomography [3.1209855614927275]
従来の解析的・定性的なCT再構成アルゴリズムは数百の角データサンプリングを必要とする。
我々は,高品質な3Dボリュームを再構成するために,ユニークなX線輸送物理を取り入れた新しいTtomoGRAFフレームワークを開発した。
論文 参考訳(メタデータ) (2024-11-12T20:07:59Z) - Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - HFGS: 4D Gaussian Splatting with Emphasis on Spatial and Temporal High-Frequency Components for Endoscopic Scene Reconstruction [13.012536387221669]
ロボット支援による最小侵襲手術は、手術結果を改善するため、動的シーン再構築の強化による恩恵を受ける。
NeRFはシーン再構成に有効だが、推論速度の遅さとトレーニング期間の長いため適用性が制限されている。
3D Gaussian Splatting (3D-GS) ベースの手法が最近のトレンドとして現れ、高速な推論機能と優れた3D品質を提供する。
本稿では,空間的および時間的周波数の観点からこれらの課題に対処する,変形可能な内視鏡再構成のための新しいアプローチであるHFGSを提案する。
論文 参考訳(メタデータ) (2024-05-28T06:48:02Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
内視鏡的シーンの再構築は、外科手術後の分析から教育訓練まで、様々な医療応用にとって重要な要素である。
変形組織の非常にダイナミックな環境下での移動内視鏡の挑戦的なセットアップに着目する。
複数重重なり合う4次元ニューラルラジアンスフィールド(NeRF)への暗黙的なシーン分離と、再構成とカメラのスクラッチからのポーズを協調的に最適化するプログレッシブ最適化手法を提案する。
これにより、使いやすさが向上し、5000フレーム以上の手術ビデオの処理に間に合うように復元能力を拡張できる。
論文 参考訳(メタデータ) (2024-03-18T19:13:02Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
X線CT(CT)スキャン中、患者を乗せた金属インプラントは、しばしば有害なアーティファクトに繋がる。
既存のディープラーニングベースの手法は、有望な再構築性能を得た。
本稿では,人工物の物理的事前構造に適応するために,配向型畳み込み表現戦略を提案する。
論文 参考訳(メタデータ) (2022-12-26T13:56:12Z) - SNAF: Sparse-view CBCT Reconstruction with Neural Attenuation Fields [71.84366290195487]
神経減衰場を学習し,スパースビューCBCT再構成のためのSNAFを提案する。
提案手法は,入力ビューが20程度しかなく,高再生品質(30以上のPSNR)で優れた性能を実現する。
論文 参考訳(メタデータ) (2022-11-30T14:51:14Z) - A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction [1.8047694351309207]
本研究では,ボリュームCTとMR画像データから心表面メッシュ全体を直接予測する深層学習に基づく新しい手法を提案する。
本手法は,高分解能,高品質の全心臓再建を実現できる有望な性能を示した。
論文 参考訳(メタデータ) (2021-02-16T00:39:43Z) - Limited View Tomographic Reconstruction Using a Deep Recurrent Framework
with Residual Dense Spatial-Channel Attention Network and Sinogram
Consistency [25.16002539710169]
本稿では,同じブロックを複数回積み重ねる新しい繰り返し再構成フレームワークを提案する。
本研究では, 再帰的なブロックの中間出力のシングラムと一致するように, リカレント・フレームワークにインターリーブされたシングラム整合層を構築した。
本アルゴリズムは, 狭角化と狭角化の両面において, 既存の最先端のニューラル手法よりも一貫した, 顕著な改善を実現している。
論文 参考訳(メタデータ) (2020-09-03T16:39:48Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
強い散乱準透明物体の有限角トモグラフィーは困難で、非常に不適切な問題である。
このような問題の状況を改善することにより、アーティファクトの削減には、事前の定期化が必要である。
我々は,新しい分割畳み込みゲート再帰ユニット(SC-GRU)をビルディングブロックとして,リカレントニューラルネットワーク(RNN)アーキテクチャを考案した。
論文 参考訳(メタデータ) (2020-07-21T11:48:22Z) - Weakly-supervised 3D coronary artery reconstruction from two-view
angiographic images [4.722039838364292]
本稿では,3次元冠状動脈モデル構築のための対角的および生成的手法を提案する。
3D完全教師付き学習法と2D弱教師付き学習法により,最先端技術を上回る再現精度を得た。
論文 参考訳(メタデータ) (2020-03-26T11:41:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。