論文の概要: Spurfies: Sparse Surface Reconstruction using Local Geometry Priors
- arxiv url: http://arxiv.org/abs/2408.16544v1
- Date: Thu, 29 Aug 2024 14:02:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 13:33:01.506511
- Title: Spurfies: Sparse Surface Reconstruction using Local Geometry Priors
- Title(参考訳): 局所幾何を用いたスパース表面再構成
- Authors: Kevin Raj, Christopher Wewer, Raza Yunus, Eddy Ilg, Jan Eric Lenssen,
- Abstract要約: 我々はスパースビュー表面再構成の新しい手法であるSpurfiesを紹介した。
それは、合成データに基づいて訓練された局所幾何学的先行情報を利用するために、外観と幾何学的情報を切り離す。
提案手法をDTUデータセット上で検証し,従来技術よりも表面品質が35%向上したことを示す。
- 参考スコア(独自算出の注目度): 8.260048622127913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Spurfies, a novel method for sparse-view surface reconstruction that disentangles appearance and geometry information to utilize local geometry priors trained on synthetic data. Recent research heavily focuses on 3D reconstruction using dense multi-view setups, typically requiring hundreds of images. However, these methods often struggle with few-view scenarios. Existing sparse-view reconstruction techniques often rely on multi-view stereo networks that need to learn joint priors for geometry and appearance from a large amount of data. In contrast, we introduce a neural point representation that disentangles geometry and appearance to train a local geometry prior using a subset of the synthetic ShapeNet dataset only. During inference, we utilize this surface prior as additional constraint for surface and appearance reconstruction from sparse input views via differentiable volume rendering, restricting the space of possible solutions. We validate the effectiveness of our method on the DTU dataset and demonstrate that it outperforms previous state of the art by 35% in surface quality while achieving competitive novel view synthesis quality. Moreover, in contrast to previous works, our method can be applied to larger, unbounded scenes, such as Mip-NeRF 360.
- Abstract(参考訳): Spurfiesは、合成データに基づいて訓練された局所幾何学的先行情報を活用するために、外観や幾何学的情報を歪曲するスパースビュー表面再構成の新しい手法である。
近年の研究では、高密度なマルチビュー設定を用いた3次元再構成に重点を置いており、通常は数百枚の画像を必要とする。
しかし、これらの手法は、しばしば少数のシナリオで苦労する。
既存のスパースビュー再構築技術は、しばしば大量のデータから幾何学と外観のジョイント先行を学習する必要があるマルチビューステレオネットワークに依存している。
対照的に、我々は、合成ShapeNetデータセットのサブセットを使用する前に、局所的な幾何学を訓練するために、幾何学と外観を歪ませる神経点表現を導入する。
推測では, この表面を, 異なるボリュームレンダリングによるスパース入力ビューからの表面・外観再構成の制約として利用し, 可能な解の空間を制限している。
提案手法の有効性をDTUデータセット上で検証し,従来の技術水準を35%上回りながら,競争力のある新規なビュー合成品質を実現していることを示す。
また,従来の手法とは対照的に,Mip-NeRF 360のような大規模で非有界なシーンにも適用することができる。
関連論文リスト
- ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction [50.07671826433922]
微妙な幾何を同時に復元し、異なる特徴を持つ領域をまたいだ滑らかさを保つことは自明ではない。
そこで我々は,ND-SDFを提案する。ND-SDFは,通常のシーンとそれ以前のシーンの角偏差を表す正規偏向場を学習する。
本手法は, 壁面や床面などのスムーズなテクスチャ構造を得るだけでなく, 複雑な構造の幾何学的詳細も保存する。
論文 参考訳(メタデータ) (2024-08-22T17:59:01Z) - InfoNorm: Mutual Information Shaping of Normals for Sparse-View Reconstruction [15.900375207144759]
多視点画像からの3次元表面再構成はシーン理解とインタラクションに不可欠である。
ニューラルレージアンス場(NeRF)や符号付き距離関数(SDF)といった近年の暗黙的な表面表現は、観測情報の欠如を解決するために様々な幾何学的先行法を用いている。
本稿では,高度に相関したシーンポイントの表面正規化における相互情報を明確に促進することにより,幾何学的モデリングの正規化を提案する。
論文 参考訳(メタデータ) (2024-07-17T15:46:25Z) - GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image [94.56927147492738]
単一画像から幾何学的属性を推定するための新しい生成基盤モデルであるGeoWizardを紹介する。
拡散前処理の活用は,資源利用における一般化,詳細な保存,効率性を著しく向上させることが示唆された。
本稿では,様々なシーンの複雑なデータ分布を,個別のサブディストリビューションに分離する,シンプルかつ効果的な戦略を提案する。
論文 参考訳(メタデータ) (2024-03-18T17:50:41Z) - NeuSurf: On-Surface Priors for Neural Surface Reconstruction from Sparse
Input Views [41.03837477483364]
本研究では,表面の高度に忠実な再構成を実現するために,地上の事前情報を活用する新しいスパース・ビュー・リコンストラクション・フレームワークを提案する。
具体的には,大域的幾何アライメントと局所的幾何洗練に関するいくつかの制約を設計し,粗い形状と細部を協調的に最適化する。
DTUとBlendedMVSデータセットによる2つの一般的なスパース設定の実験結果は、最先端の手法よりも大幅に改善されたことを示している。
論文 参考訳(メタデータ) (2023-12-21T16:04:45Z) - DiViNeT: 3D Reconstruction from Disparate Views via Neural Template
Regularization [7.488962492863031]
本稿では3つの異なるRGB画像を入力として用いたボリュームレンダリングに基づくニューラルサーフェス再構成手法を提案する。
我々のキーとなる考え方は再建を規則化することであり、これは深刻な問題であり、スパースビューの間に大きなギャップを埋めることである。
提案手法は, 従来の手法の中でも, 疎外な視点で, 最高の復元品質を達成できる。
論文 参考訳(メタデータ) (2023-06-07T18:05:14Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
最先端のニューラル暗黙法は、多くの入力ビューから単純なシーンの高品質な再構築を可能にする。
これは主に、十分な制約を提供していないRGB再構築損失の固有の曖昧さによって引き起こされる。
近年の単分子形状予測の分野での進歩に触発され, ニューラルな暗黙的表面再構成の改善にこれらの方法が役立つかを探究する。
論文 参考訳(メタデータ) (2022-06-01T17:58:15Z) - Facial Geometric Detail Recovery via Implicit Representation [147.07961322377685]
そこで本研究では,一眼の顔画像のみを用いて,テクスチャガイドを用いた幾何的細部復元手法を提案する。
提案手法は,高品質なテクスチャ補完と暗黙の面の強力な表現性を組み合わせたものである。
本手法は, 顔の正確な細部を復元するだけでなく, 正常部, アルベド部, シェーディング部を自己監督的に分解する。
論文 参考訳(メタデータ) (2022-03-18T01:42:59Z) - Learning Signed Distance Field for Multi-view Surface Reconstruction [24.090786783370195]
ステレオマッチングと特徴整合性の知識を生かした新しいニューラルネットワーク表面再構成フレームワークを提案する。
サインされた距離場(SDF)と表面光場(SDF)をそれぞれ、シーン形状と外観を表すために適用する。
本手法は,地形推定のロバスト性を向上し,複雑なシーントポロジの再構築を支援する。
論文 参考訳(メタデータ) (2021-08-23T06:23:50Z) - SIDER: Single-Image Neural Optimization for Facial Geometric Detail
Recovery [54.64663713249079]
SIDERは、教師なしの方法で単一の画像から詳細な顔形状を復元する新しい光度最適化手法である。
以前の作業とは対照的に、SIDERはデータセットの事前に依存せず、複数のビュー、照明変更、地上の真実の3D形状から追加の監視を必要としない。
論文 参考訳(メタデータ) (2021-08-11T22:34:53Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。