論文の概要: Learning Signed Distance Field for Multi-view Surface Reconstruction
- arxiv url: http://arxiv.org/abs/2108.09964v1
- Date: Mon, 23 Aug 2021 06:23:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-24 15:41:43.087614
- Title: Learning Signed Distance Field for Multi-view Surface Reconstruction
- Title(参考訳): 多視点表面再構成のための符号付き距離場学習
- Authors: Jingyang Zhang, Yao Yao, Long Quan
- Abstract要約: ステレオマッチングと特徴整合性の知識を生かした新しいニューラルネットワーク表面再構成フレームワークを提案する。
サインされた距離場(SDF)と表面光場(SDF)をそれぞれ、シーン形状と外観を表すために適用する。
本手法は,地形推定のロバスト性を向上し,複雑なシーントポロジの再構築を支援する。
- 参考スコア(独自算出の注目度): 24.090786783370195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works on implicit neural representations have shown promising results
for multi-view surface reconstruction. However, most approaches are limited to
relatively simple geometries and usually require clean object masks for
reconstructing complex and concave objects. In this work, we introduce a novel
neural surface reconstruction framework that leverages the knowledge of stereo
matching and feature consistency to optimize the implicit surface
representation. More specifically, we apply a signed distance field (SDF) and a
surface light field to represent the scene geometry and appearance
respectively. The SDF is directly supervised by geometry from stereo matching,
and is refined by optimizing the multi-view feature consistency and the
fidelity of rendered images. Our method is able to improve the robustness of
geometry estimation and support reconstruction of complex scene topologies.
Extensive experiments have been conducted on DTU, EPFL and Tanks and Temples
datasets. Compared to previous state-of-the-art methods, our method achieves
better mesh reconstruction in wide open scenes without masks as input.
- Abstract(参考訳): 暗黙的神経表現に関する最近の研究は、多視点表面再構成に有望な結果を示している。
しかし、ほとんどのアプローチは比較的単純な幾何学に限られており、通常は複雑で凹凸な物体を再構成するためにきれいな物体マスクを必要とする。
本稿では,ステレオマッチングと特徴整合性の知識を活かし,暗黙的表面表現を最適化する新しい神経表面再構成フレームワークを提案する。
具体的には,サイン付き距離場(SDF)と表面光場をそれぞれ,シーン形状と外観を表すために適用する。
SDFはステレオマッチングから幾何学的に直接監督され、多視点特徴の一貫性とレンダリング画像の忠実度を最適化することにより洗練される。
本手法は,地形推定の堅牢性を向上し,複雑なシーントポロジの再構築を支援する。
DTU、EPFL、タンク、テンプルのデータセットに関する大規模な実験が行われた。
従来の最先端手法と比較して,マスキングを入力として使用せずに,広いオープンシーンでメッシュ再構成を実現する。
関連論文リスト
- AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
AniSDF(AniSDF)は,高忠実度3次元再構成のための物理に基づく符号化による融合粒度ニューラルサーフェスを学習する新しいアプローチである。
本手法は, 幾何再構成と新規ビュー合成の両面において, SDF法の品質を飛躍的に向上させる。
論文 参考訳(メタデータ) (2024-10-02T03:10:38Z) - Spurfies: Sparse Surface Reconstruction using Local Geometry Priors [8.260048622127913]
我々はスパースビュー表面再構成の新しい手法であるSpurfiesを紹介した。
それは、合成データに基づいて訓練された局所幾何学的先行情報を利用するために、外観と幾何学的情報を切り離す。
提案手法をDTUデータセット上で検証し,従来技術よりも表面品質が35%向上したことを示す。
論文 参考訳(メタデータ) (2024-08-29T14:02:47Z) - NeuSurf: On-Surface Priors for Neural Surface Reconstruction from Sparse
Input Views [41.03837477483364]
本研究では,表面の高度に忠実な再構成を実現するために,地上の事前情報を活用する新しいスパース・ビュー・リコンストラクション・フレームワークを提案する。
具体的には,大域的幾何アライメントと局所的幾何洗練に関するいくつかの制約を設計し,粗い形状と細部を協調的に最適化する。
DTUとBlendedMVSデータセットによる2つの一般的なスパース設定の実験結果は、最先端の手法よりも大幅に改善されたことを示している。
論文 参考訳(メタデータ) (2023-12-21T16:04:45Z) - UniSDF: Unifying Neural Representations for High-Fidelity 3D
Reconstruction of Complex Scenes with Reflections [92.38975002642455]
大規模な複雑なシーンをリフレクションで再構成できる汎用3次元再構成手法UniSDFを提案する。
提案手法は,複雑な大規模シーンを細部と反射面で頑健に再構築することができる。
論文 参考訳(メタデータ) (2023-12-20T18:59:42Z) - Dynamic Multi-View Scene Reconstruction Using Neural Implicit Surface [0.9134661726886928]
マルチビュービデオからの暗黙表現を用いて表面形状と外観を再構成するテンプレートレス手法を提案する。
我々はトポロジーを考慮した変形と符号付き距離場を利用して、微分可能なボリュームレンダリングにより複雑な動的曲面を学習する。
異なる多視点ビデオデータセットを用いた実験により,本手法は高忠実度表面再構成とフォトリアリスティックなノベルビュー合成を実現することを示す。
論文 参考訳(メタデータ) (2023-02-28T19:47:30Z) - NeuralUDF: Learning Unsigned Distance Fields for Multi-view
Reconstruction of Surfaces with Arbitrary Topologies [87.06532943371575]
本稿では2次元画像からボリュームレンダリングにより任意の位相で表面を再構成する新しい手法であるNeuralUDFを提案する。
本稿では,表面をUDF(Unsigned Distance Function)として表現し,ニューラルUDF表現を学習するための新しいボリュームレンダリング手法を提案する。
論文 参考訳(メタデータ) (2022-11-25T15:21:45Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
最先端のニューラル暗黙法は、多くの入力ビューから単純なシーンの高品質な再構築を可能にする。
これは主に、十分な制約を提供していないRGB再構築損失の固有の曖昧さによって引き起こされる。
近年の単分子形状予測の分野での進歩に触発され, ニューラルな暗黙的表面再構成の改善にこれらの方法が役立つかを探究する。
論文 参考訳(メタデータ) (2022-06-01T17:58:15Z) - Geo-Neus: Geometry-Consistent Neural Implicit Surfaces Learning for
Multi-view Reconstruction [41.43563122590449]
多視点再構成のための幾何一貫性のあるニューラルサーフェス学習を提案する。
提案手法は, 複雑な薄板構造と大きな平滑領域の両方において, 高品質な表面再構成を実現する。
論文 参考訳(メタデータ) (2022-05-31T14:52:07Z) - NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction [88.02850205432763]
物体やシーンを2次元画像入力から高忠実度に再構成するニュートラルサーフェス(NeuS)を提案する。
DVRやIDRのような既存の神経表面再構成アプローチでは、フォアグラウンドマスクを監督する必要がある。
本研究では,従来のボリュームレンダリング手法が表面再構成に固有の幾何学的誤差を引き起こすことを観察する。
マスクの監督なしでもより正確な表面再構成を実現するため,第一次近似ではバイアスのない新しい定式化を提案する。
論文 参考訳(メタデータ) (2021-06-20T12:59:42Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
本稿では,任意の物体の高品質な形状と複雑な空間変化を持つBRDFを再構成する学習に基づく新しい手法を提案する。
まず、深層多視点ステレオネットワークを用いて、ビューごとの深度マップを推定する。
これらの深度マップは、異なるビューを粗く整列するために使用される。
本稿では,新しい多視点反射率推定ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-27T21:28:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。