Heisenberg-Limited Spin-Mechanical Gravimetry
- URL: http://arxiv.org/abs/2408.16587v1
- Date: Thu, 29 Aug 2024 14:49:40 GMT
- Title: Heisenberg-Limited Spin-Mechanical Gravimetry
- Authors: Victor Montenegro,
- Abstract summary: We show that the gravimetry precision in a conditional displacement spin-mechanical system increases quadratically with the number of spins.
We prove that a feasible spin magnetization measurement can reveal the ultimate gravimetry precision at such disentangling times.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precision measurements of gravitational acceleration, or gravimetry, enable the testing of physical theories and find numerous applications in geodesy and space exploration. By harnessing quantum effects, high-precision sensors can achieve sensitivity and accuracy far beyond their classical counterparts when using the same number of sensing resources. Therefore, developing gravimeters with quantum-enhanced sensitivity is essential for advancing theoretical and applied physics. While novel quantum gravimeters have already been proposed for this purpose, the ultimate sensing precision, known as the Heisenberg limit, remains largely elusive. Here, we demonstrate that the gravimetry precision in a conditional displacement spin-mechanical system increases quadratically with the number of spins: a Heisenberg-limited spin-mechanical gravimeter. In general, the gravitational parameter is dynamically encoded into the entire entangled spin-mechanical probe. However, at some specific times, the mechanical degree of freedom disentangles from the spin subsystem, transferring all the information about the gravitational acceleration to the spin subsystem. Hence, we prove that a feasible spin magnetization measurement can reveal the ultimate gravimetry precision at such disentangling times. Finally, we demonstrate that the proposed system is robust against spin-mechanical coupling anisotropies.
Related papers
- Quantum Sensing from Gravity as Universal Dephasing Channel for Qubits [41.96816488439435]
WeExploit the generic phenomena of the gravitational redshift and Aharonov-Bohm phase.
We show that entangled quantum states dephase with a universal rate.
We propose qubit-based platforms as quantum sensors for precision gravitometers and mechanical strain gauges.
arXiv Detail & Related papers (2024-06-05T13:36:06Z) - Quantum-Enhanced Metrology in Cavity Magnomechanics [0.0]
We find subtle roles of entanglement in a metrological scheme based on an experimentally feasible cavity magnomechanical system.
In particular, we find that the entanglement between magnons and photons is of crucial importance during the dynamical encoding process.
arXiv Detail & Related papers (2023-05-14T02:13:59Z) - Quantum Gravitational Sensor for Space Debris [0.0]
We will establish a three dimensional model to describe the gravity gradient signal from an external moving object.
We will then theoretically investigate the sensitivities using the matter-wave interferometer based on the Stern-Gerlach set-up.
We will consider objects near Earth-based experiments and space debris in proximity of satellites.
arXiv Detail & Related papers (2022-11-28T19:00:03Z) - Manipulation of gravitational quantum states of a bouncing neutron with
the GRANIT spectrometer [44.62475518267084]
The GRANIT apparatus is the first physics experiment connected to a superthermal helium UCN source.
We report on the methods developed for this instrument showing how specific GQS can be favored using a step between mirrors and an absorbing slit.
arXiv Detail & Related papers (2022-05-23T08:37:28Z) - Quantum Sensors for High Precision Measurements of Spin-dependent
Interactions [47.187609203210705]
Experimental methods and technologies developed for quantum information science have rapidly advanced in recent years.
Spin-based quantum sensors can be used to search for myriad phenomena.
Spin-based quantum sensors offer a methodology for tests of fundamental physics that is complementary to particle colliders and large scale particle detectors.
arXiv Detail & Related papers (2022-03-17T17:36:48Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Optimal estimation of time-dependent gravitational fields with quantum
optomechanical systems [0.0]
We study the fundamental sensitivity that can be achieved with an ideal optomechanical system in the nonlinear regime.
We specifically apply our results to the measurement of gravitational fields from small oscillating masses.
arXiv Detail & Related papers (2020-08-14T18:00:01Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Quantum Sensing by Using STIRAP with Dressed States Driving [4.963201371632538]
We propose a novel quantum sensing model based on dressed states driving (DSD) in stimulated Raman adiabatic passage.
The model is universal for sensing different physical quantities, such as magnetic field, mass, rotation and etc.
arXiv Detail & Related papers (2020-03-16T01:58:03Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.