論文の概要: Examination of Code generated by Large Language Models
- arxiv url: http://arxiv.org/abs/2408.16601v1
- Date: Thu, 29 Aug 2024 15:12:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 13:23:15.053793
- Title: Examination of Code generated by Large Language Models
- Title(参考訳): 大規模言語モデルによるコード生成の検討
- Authors: Robin Beer, Alexander Feix, Tim Guttzeit, Tamara Muras, Vincent Müller, Maurice Rauscher, Florian Schäffler, Welf Löwe,
- Abstract要約: 大規模言語モデル(LLM)は、コード生成を自動化することでソフトウェア開発を変革している。
高品質のコード生成におけるLCMの現状を評価するため,ChatGPTとCopilotを用いた制御実験を行った。
言語間, アルゴリズムとテストコード間, 時間とともに, LLM間で有意な差異が認められた。
- 参考スコア(独自算出の注目度): 35.51378656555693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs), such as ChatGPT and Copilot, are transforming software development by automating code generation and, arguably, enable rapid prototyping, support education, and boost productivity. Therefore, correctness and quality of the generated code should be on par with manually written code. To assess the current state of LLMs in generating correct code of high quality, we conducted controlled experiments with ChatGPT and Copilot: we let the LLMs generate simple algorithms in Java and Python along with the corresponding unit tests and assessed the correctness and the quality (coverage) of the generated (test) codes. We observed significant differences between the LLMs, between the languages, between algorithm and test codes, and over time. The present paper reports these results together with the experimental methods allowing repeated and comparable assessments for more algorithms, languages, and LLMs over time.
- Abstract(参考訳): ChatGPTやCopilotのような大規模言語モデル(LLM)は、コード生成を自動化してソフトウェア開発を変革し、間違いなく、迅速なプロトタイピング、教育のサポート、生産性の向上を実現している。
したがって、生成されたコードの正確さと品質は、手書きのコードと同等であるべきです。
高品質なコードを生成する際のLLMの現状を評価するために,ChatGPT と Copilot を用いて制御実験を行った。我々は LLM に対して,対応するユニットテストとともに Java と Python で簡単なアルゴリズムを生成させ,生成した(テスト) コードの品質(カバレッジ)と正確性を評価した。
言語間, アルゴリズムとテストコード間, 時間とともに, LLM間で有意な差異が認められた。
本稿では,これらの結果と実験手法を併用して,より多くのアルゴリズム,言語,LLMに対して,繰り返しかつ同等のアセスメントを可能にする手法について報告する。
関連論文リスト
- Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
本稿では,自然言語と符号化機能の統合性を高めるための事前学習戦略を提案する。
結果のモデルであるCrystalは、両方のドメインで顕著な能力を示します。
論文 参考訳(メタデータ) (2024-11-06T10:28:46Z) - Automatic Generation of Benchmarks and Reliable LLM Judgment for Code Tasks [0.8274693573069442]
この研究は、自動生成されたベンチマークを利用して、LaaJの実装を生成および評価する方法論を導入する。
ベンチマークは、LaaJの開発と検証と、LaaJを使用してLLMコード関連ソリューションの検証とテストの両方に使用される。
私たちのアプローチは、高品質なコードタスクソリューションの作成を可能にします。
論文 参考訳(メタデータ) (2024-10-28T14:34:36Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
大規模言語モデル(LLM)はコード生成において顕著な進歩を遂げた。
CodeIPは、新しいマルチビット透かし技術で、出所の詳細を保存するために追加情報を埋め込む。
5つのプログラミング言語にまたがる実世界のデータセットで実施された実験は、CodeIPの有効性を実証している。
論文 参考訳(メタデータ) (2024-04-24T04:25:04Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Mutation-based Consistency Testing for Evaluating the Code Understanding
Capability of LLMs [5.549095839198671]
大きな言語モデル(LLM)は、自然言語とプログラミング言語の両方を処理する際、顕著な能力を示している。
本稿では,LLMのコード理解性能を評価する新しい手法を提案し,特にコードと記述の微妙な差異に着目した。
演算子置換やステートメント削除など,さまざまなタイプのコード突然変異を適用して,一貫性のないコード記述ペアを生成する。
我々は,現在最先端のコード生成ベンチマークであるHumanEval-Xを用いて,GPT-3.5とGPT-4の2つのLLMのケーススタディを行う。
論文 参考訳(メタデータ) (2024-01-11T14:27:43Z) - Testing LLMs on Code Generation with Varying Levels of Prompt
Specificity [0.0]
大規模言語モデル (LLM) は、人間のようなテキスト生成と処理を模倣する非並列的な技術を示している。
自然言語のプロンプトを実行可能なコードに変換する可能性は、ソフトウェア開発プラクティスの大きな変化を約束します。
論文 参考訳(メタデータ) (2023-11-10T23:41:41Z) - CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model [58.127534002232096]
本稿では,オープンソースの事前学習型LLMであるCodeFuse-13Bを紹介する。
英語と中国語の両方のプロンプトによるコード関連のタスク用に特別に設計されている。
CodeFuseは、高品質な事前トレーニングデータセットを利用することで、その効果を達成する。
論文 参考訳(メタデータ) (2023-10-10T02:38:44Z) - Coarse-Tuning Models of Code with Reinforcement Learning Feedback [0.0]
コード上で事前訓練されたLarge Language Models (LLM) が、プログラム合成の主流のアプローチとして登場した。
コードの品質を評価する接地関数からのフィードバックを用いて、強化学習により事前学習したLLMをさらに訓練するRCCFを提案する。
論文 参考訳(メタデータ) (2023-05-25T22:09:08Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。