論文の概要: One-Shot Learning Meets Depth Diffusion in Multi-Object Videos
- arxiv url: http://arxiv.org/abs/2408.16704v1
- Date: Thu, 29 Aug 2024 16:58:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 12:51:37.105646
- Title: One-Shot Learning Meets Depth Diffusion in Multi-Object Videos
- Title(参考訳): マルチオブジェクトビデオにおける深度拡散とワンショット学習
- Authors: Anisha Jain,
- Abstract要約: 本稿では,一対のテキスト・ビデオから一対のコヒーレント・多様な映像を生成可能な,新しい深度条件付き手法を提案する。
提案手法は,従来設計した空間的・時間的注意機構を用いて,事前学習したモデルを用いて連続的な動きを捉える。
推論中、ビデオ生成のための構造的ガイダンスを提供するためにDDIMインバージョンを使用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Creating editable videos that depict complex interactions between multiple objects in various artistic styles has long been a challenging task in filmmaking. Progress is often hampered by the scarcity of data sets that contain paired text descriptions and corresponding videos that showcase these interactions. This paper introduces a novel depth-conditioning approach that significantly advances this field by enabling the generation of coherent and diverse videos from just a single text-video pair using a pre-trained depth-aware Text-to-Image (T2I) model. Our method fine-tunes the pre-trained model to capture continuous motion by employing custom-designed spatial and temporal attention mechanisms. During inference, we use the DDIM inversion to provide structural guidance for video generation. This innovative technique allows for continuously controllable depth in videos, facilitating the generation of multiobject interactions while maintaining the concept generation and compositional strengths of the original T2I model across various artistic styles, such as photorealism, animation, and impressionism.
- Abstract(参考訳): 様々な芸術的なスタイルで複数のオブジェクト間の複雑な相互作用を描写する編集可能なビデオを作成することは、映画制作において長年の課題であった。
プログレスはしばしば、ペア化されたテキスト記述とこれらの相互作用を示す対応するビデオを含むデータセットの不足によって妨げられる。
本稿では,一対のテキストビデオから,事前学習した深度認識テキスト・トゥ・イメージ(T2I)モデルを用いて,コヒーレントで多様な映像を生成できるようにすることにより,この領域を大幅に発展させる新しい深度条件手法を提案する。
提案手法は,従来設計した空間的・時間的注意機構を用いて,事前学習したモデルを用いて連続的な動きを捉える。
推論中、ビデオ生成のための構造的ガイダンスを提供するためにDDIMインバージョンを使用する。
この革新的な技術は、ビデオにおいて連続的に制御可能な深度を実現し、光リアリズム、アニメーション、印象主義といった様々な芸術様式でオリジナルのT2Iモデルのコンセプト生成と構成強度を維持しながら、多目的インタラクションの生成を容易にする。
関連論文リスト
- Vivid-ZOO: Multi-View Video Generation with Diffusion Model [76.96449336578286]
新しい課題は、大量のキャプション付きマルチビュービデオの欠如と、そのような多次元分布をモデル化する複雑さにある。
本稿では,テキストから動的3Dオブジェクトを中心に,高品質なマルチビュービデオを生成する拡散型パイプラインを提案する。
論文 参考訳(メタデータ) (2024-06-12T21:44:04Z) - VideoTetris: Towards Compositional Text-to-Video Generation [45.395598467837374]
VideoTetrisは、合成T2V生成を可能にするフレームワークである。
我々は, VideoTetrisがT2V生成において, 印象的な質的, 定量的な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2024-06-06T17:25:33Z) - Towards Multi-Task Multi-Modal Models: A Video Generative Perspective [5.495245220300184]
この論文は、さまざまな条件下でビデオやその他のモダリティを生成するマルチタスクモデルを構築するために、我々の努力を年代記している。
我々は、視覚的観察と解釈可能な語彙の双方向マッピングのための新しいアプローチを公表する。
私たちのスケーラブルなビジュアルトークン表現は、生成、圧縮、理解タスクで有益であることが証明されます。
論文 参考訳(メタデータ) (2024-05-26T23:56:45Z) - StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation [117.13475564834458]
本稿では,一貫性自己注意という新たな自己注意計算手法を提案する。
提案手法を長距離ビデオ生成に拡張するために,新しい意味空間時間運動予測モジュールを導入する。
これら2つの新しいコンポーネントを統合することで、StoryDiffusionと呼ばれるフレームワークは、一貫した画像やビデオでテキストベースのストーリーを記述することができます。
論文 参考訳(メタデータ) (2024-05-02T16:25:16Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - CustomVideo: Customizing Text-to-Video Generation with Multiple Subjects [61.323597069037056]
テキスト・ビデオ・ジェネレーションのパーソナライズへの現在のアプローチは、複数の課題に対処することに悩まされている。
複数の被験者の指導でアイデンティティ保存ビデオを生成する新しいフレームワークであるCustomVideoを提案する。
論文 参考訳(メタデータ) (2024-01-18T13:23:51Z) - DirecT2V: Large Language Models are Frame-Level Directors for Zero-Shot
Text-to-Video Generation [37.25815760042241]
本稿では,テキスト・ツー・ビデオ(T2V)ビデオを生成するための新しいフレームワークであるDirecT2Vを紹介する。
拡散モデルに新しい値マッピング法とデュアルソフトマックスフィルタリングを適用し、追加のトレーニングを必要としない。
実験により,視覚的コヒーレントかつストーリーフルなビデオ制作におけるフレームワークの有効性が検証された。
論文 参考訳(メタデータ) (2023-05-23T17:57:09Z) - InstructVid2Vid: Controllable Video Editing with Natural Language Instructions [97.17047888215284]
InstructVid2Vidは、人間の言語命令でガイドされたビデオ編集のためのエンドツーエンドの拡散ベースの方法論である。
我々のアプローチは、自然言語ディレクティブによって案内される映像操作を強化し、サンプルごとの微調整や逆変換の必要性を排除します。
論文 参考訳(メタデータ) (2023-05-21T03:28:13Z) - Multi-object Video Generation from Single Frame Layouts [84.55806837855846]
本研究では,グローバルシーンを局所オブジェクトに合成するビデオ生成フレームワークを提案する。
我々のフレームワークは、画像生成手法からの非自明な適応であり、この分野では新しくなっています。
本モデルは広範に使用されている2つのビデオ認識ベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-05-06T09:07:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。