論文の概要: Enhanced forecasting of stock prices based on variational mode decomposition, PatchTST, and adaptive scale-weighted layer
- arxiv url: http://arxiv.org/abs/2408.16707v1
- Date: Thu, 29 Aug 2024 17:00:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 12:51:37.100232
- Title: Enhanced forecasting of stock prices based on variational mode decomposition, PatchTST, and adaptive scale-weighted layer
- Title(参考訳): 変動モード分解, PatchTST, 適応スケール重み付け層に基づく株価予測の高度化
- Authors: Xiaorui Xue, Shaofang Li, Xiaonan Wang,
- Abstract要約: 本研究では、変分モード分解(VMD)、PatchTST、適応スケール重み付け層(ASWL)を統合した新しい複合予測フレームワークを提案する。
VMD-PatchTST-ASWLフレームワークは従来のモデルに比べて予測精度が大幅に向上している。
この革新的なアプローチは、さまざまな財務分析や投資決定の文脈における潜在的な応用を含む、株価指数の価格予測のための強力なツールを提供する。
- 参考スコア(独自算出の注目度): 1.9635048365486127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The significant fluctuations in stock index prices in recent years highlight the critical need for accurate forecasting to guide investment and financial strategies. This study introduces a novel composite forecasting framework that integrates variational mode decomposition (VMD), PatchTST, and adaptive scale-weighted layer (ASWL) to address these challenges. Utilizing datasets of four major stock indices--SP500, DJI, SSEC, and FTSE--from 2000 to 2024, the proposed method first decomposes the raw price series into intrinsic mode functions (IMFs) using VMD. Each IMF is then modeled with PatchTST to capture temporal patterns effectively. The ASWL module is applied to incorporate scale information, enhancing prediction accuracy. The final forecast is derived by aggregating predictions from all IMFs. The VMD-PatchTST-ASWL framework demonstrates significant improvements in forecasting accuracy compared to traditional models, showing robust performance across different indices. This innovative approach provides a powerful tool for stock index price forecasting, with potential applications in various financial analysis and investment decision-making contexts.
- Abstract(参考訳): 近年の株価の急激な変動は、投資や金融戦略を導くための正確な予測の必要性を浮き彫りにしている。
本研究では,これらの課題に対処するために,変分モード分解(VMD),PatchTST,適応スケール重み付け層(ASWL)を統合した新しい複合予測フレームワークを提案する。
提案手法は,2000年から2024年までの4大株価指標(SP500,DJI,SSEC,FTSE)を用いて,原価系列をVMDを用いて固有モード関数(IMF)に分解する。
各IMFは、時間的パターンを効果的に捉えるために、PatchTSTでモデル化される。
ASWLモジュールは、スケール情報を組み込むために適用され、予測精度が向上する。
最終予測はすべてのIMFの予想をまとめることによって導かれる。
VMD-PatchTST-ASWLフレームワークは、従来のモデルと比較して予測精度が大幅に向上し、異なるインデックス間で堅牢なパフォーマンスを示している。
この革新的なアプローチは、さまざまな財務分析や投資決定の文脈における潜在的な応用を含む、株価指数の価格予測のための強力なツールを提供する。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
論文 参考訳(メタデータ) (2024-08-13T04:53:31Z) - Gated recurrent neural network with TPE Bayesian optimization for enhancing stock index prediction accuracy [0.0]
インドの著名な株式市場指標であるNIFTY50指数の翌日の終値の予測精度を改善することを目的とする。
8つの影響要因の組み合わせは、基本株価データ、技術指標、原油価格、マクロ経済データから慎重に選択される。
論文 参考訳(メタデータ) (2024-06-02T06:39:01Z) - Enhancing Financial Data Visualization for Investment Decision-Making [0.04096453902709291]
本稿では,ストックダイナミクスを予測するLong Short-Term Memory(LSTM)ネットワークの可能性について検討する。
この研究は、複雑なパターンをキャプチャするLSTMの能力を高めるために、複数の特徴を取り入れている。
LSTMには25日間のタイムステップで重要な価格とボリューム特性が組み込まれている。
論文 参考訳(メタデータ) (2023-12-09T07:53:25Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - Deep Learning Enhanced Realized GARCH [6.211385208178938]
本稿では,深層学習(LSTM)とボラティリティ対策の併用によるボラティリティモデリングの新しい手法を提案する。
このLSTMで強化されたGARCHフレームワークは、金融経済学、高周波取引データ、ディープラーニングによるモデリングの進歩を取り入れ、蒸留する。
論文 参考訳(メタデータ) (2023-02-16T00:20:43Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z) - Deep Learning for Portfolio Optimization [5.833272638548154]
個々の資産を選択する代わりに、ポートフォリオを形成するために市場指標のETF(Exchange-Traded Funds)を交換します。
我々は,本手法を広範囲のアルゴリズムと比較し,本モデルがテスト期間中に最高の性能を得ることを示す。
論文 参考訳(メタデータ) (2020-05-27T21:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。