論文の概要: UV-free Texture Generation with Denoising and Geodesic Heat Diffusions
- arxiv url: http://arxiv.org/abs/2408.16762v2
- Date: Thu, 10 Oct 2024 14:48:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 04:08:49.225310
- Title: UV-free Texture Generation with Denoising and Geodesic Heat Diffusions
- Title(参考訳): デノイングと測地熱拡散によるUVフリーテクスチャ生成
- Authors: Simone Foti, Stefanos Zafeiriou, Tolga Birdal,
- Abstract要約: メッシュの標準的なUVベースの処理機構の最も顕著な課題は、シーム、無駄なUV空間、および表面上の様々な解像度である。
本稿では,3次元メッシュの表面上での操作に制約された拡散モデルを用いて,テクスチャを色分けした点雲色として表現することを提案する。
- 参考スコア(独自算出の注目度): 50.55154348768031
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Seams, distortions, wasted UV space, vertex-duplication, and varying resolution over the surface are the most prominent issues of the standard UV-based texturing of meshes. These issues are particularly acute when automatic UV-unwrapping techniques are used. For this reason, instead of generating textures in automatically generated UV-planes like most state-of-the-art methods, we propose to represent textures as coloured point-clouds whose colours are generated by a denoising diffusion probabilistic model constrained to operate on the surface of 3D objects. Our sampling and resolution agnostic generative model heavily relies on heat diffusion over the surface of the meshes for spatial communication between points. To enable processing of arbitrarily sampled point-cloud textures and ensure long-distance texture consistency we introduce a fast re-sampling of the mesh spectral properties used during the heat diffusion and introduce a novel heat-diffusion-based self-attention mechanism. Our code and pre-trained models are available at github.com/simofoti/UV3-TeD.
- Abstract(参考訳): メッシュの標準UVベースのテクスチャにおいて、シーム、歪み、無駄なUV空間、頂点重複、および表面上の様々な解像度が最も顕著な問題である。
これらの問題は、自動UVアンラッピング技術を使用する場合、特に深刻である。
このため,ほとんどの最先端技術と同様に自動生成UV平面のテクスチャを生成する代わりに,3次元物体の表面での操作に制約された拡散確率モデルにより色が生じる色付き点雲としてテクスチャを表現することを提案する。
我々のサンプリングおよび分解能非依存生成モデルは,点間の空間的通信のためにメッシュ表面上の熱拡散に大きく依存している。
任意サンプリングした点雲テクスチャの処理と長距離テクスチャの整合性を確保するため,熱拡散時に使用するメッシュスペクトル特性の高速再サンプリングを導入し,新しい熱拡散型自己保持機構を導入する。
我々のコードと事前訓練されたモデルはgithub.com/simofoti/UV3-TeDで利用可能です。
関連論文リスト
- TEXGen: a Generative Diffusion Model for Mesh Textures [63.43159148394021]
我々は、UVテクスチャ空間自体における学習の根本的な問題に焦点を当てる。
本稿では,点クラウド上にアテンション層を持つUVマップ上の畳み込みをインターリーブするスケーラブルなネットワークアーキテクチャを提案する。
テキストプロンプトとシングルビュー画像によって導かれるUVテクスチャマップを生成する7億のパラメータ拡散モデルを訓練する。
論文 参考訳(メタデータ) (2024-11-22T05:22:11Z) - CVT-xRF: Contrastive In-Voxel Transformer for 3D Consistent Radiance Fields from Sparse Inputs [65.80187860906115]
スパース入力によるNeRFの性能向上のための新しい手法を提案する。
まず, サンプル線が, 3次元空間内の特定のボクセルと交差することを保証するために, ボクセルを用いた放射線サンプリング戦略を採用する。
次に、ボクセル内の追加点をランダムにサンプリングし、トランスフォーマーを適用して各線上の他の点の特性を推測し、ボリュームレンダリングに組み込む。
論文 参考訳(メタデータ) (2024-03-25T15:56:17Z) - Nuvo: Neural UV Mapping for Unruly 3D Representations [61.87715912587394]
既存のUVマッピングアルゴリズムは、最先端の3D再構成と生成技術によって生成された幾何学で動作する。
本稿では,3次元再構成と生成技術により生成された幾何学的手法を用いたUVマッピング手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T18:58:38Z) - Texture Generation on 3D Meshes with Point-UV Diffusion [86.69672057856243]
本稿では, 粗い微細化パイプラインであるPoint-UV拡散モデルとUVマッピングを併用し, 高品質なテクスチャイメージをUV空間で生成する。
本手法は,任意の属のメッシュを処理し,多種多様で,幾何に適合し,高忠実度なテクスチャを生成する。
論文 参考訳(メタデータ) (2023-08-21T06:20:54Z) - Relightify: Relightable 3D Faces from a Single Image via Diffusion
Models [86.3927548091627]
単一画像からの3次元顔BRDF再構成を高精度に行うために,拡散モデルを用いた最初のアプローチを提案する。
既存の手法とは対照的に,観測されたテクスチャを直接入力画像から取得することで,より忠実で一貫した推定が可能となる。
論文 参考訳(メタデータ) (2023-05-10T11:57:49Z) - FFHQ-UV: Normalized Facial UV-Texture Dataset for 3D Face Reconstruction [46.3392612457273]
このデータセットには、5万以上の高品質なテクスチャUVマップが含まれており、照度、中性表現、クリーンな顔領域がある。
我々のパイプラインは、StyleGANベースの顔画像編集アプローチの最近の進歩を活用している。
実験により,本手法は最先端手法よりも再現精度が向上することが示された。
論文 参考訳(メタデータ) (2022-11-25T03:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。