論文の概要: Transient Fault Tolerant Semantic Segmentation for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2408.16952v1
- Date: Fri, 30 Aug 2024 00:27:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 16:49:05.146916
- Title: Transient Fault Tolerant Semantic Segmentation for Autonomous Driving
- Title(参考訳): 自律運転のための過渡的フォールトトレラントセマンティックセマンティックセグメンテーション
- Authors: Leonardo Iurada, Niccolò Cavagnero, Fernando Fernandes Dos Santos, Giuseppe Averta, Paolo Rech, Tatiana Tommasi,
- Abstract要約: 本稿では,過渡断層に対するレジリエンスを高めるために設計されたシンプルなアクティベーション関数ReLUMaxを紹介する。
実験により,ReLUMaxはロバスト性を効果的に向上し,性能を保ち,予測信頼性を向上することを示した。
- 参考スコア(独自算出の注目度): 44.725591200232884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models are crucial for autonomous vehicle perception, but their reliability is challenged by algorithmic limitations and hardware faults. We address the latter by examining fault-tolerance in semantic segmentation models. Using established hardware fault models, we evaluate existing hardening techniques both in terms of accuracy and uncertainty and introduce ReLUMax, a novel simple activation function designed to enhance resilience against transient faults. ReLUMax integrates seamlessly into existing architectures without time overhead. Our experiments demonstrate that ReLUMax effectively improves robustness, preserving performance and boosting prediction confidence, thus contributing to the development of reliable autonomous driving systems.
- Abstract(参考訳): ディープラーニングモデルは、自動運転車の認識にとって不可欠だが、その信頼性はアルゴリズムの制限とハードウェアの欠陥によって挑戦されている。
本稿では,意味的セグメンテーションモデルにおけるフォールトトレランスを検証することによって,後者に対処する。
確立されたハードウェア故障モデルを用いて、精度と不確実性の両方の観点から既存の硬化技術を評価し、過渡的故障に対するレジリエンスを高めるために設計された新しい単純なアクティベーション機能であるReLUMaxを導入する。
ReLUMaxは、時間的オーバーヘッドなしに既存のアーキテクチャにシームレスに統合する。
実験により、ReLUMaxはロバスト性を効果的に向上し、性能を保ち、予測信頼性を高め、信頼性の高い自律運転システムの開発に寄与することが示された。
関連論文リスト
- ReliOcc: Towards Reliable Semantic Occupancy Prediction via Uncertainty Learning [26.369237406972577]
視覚中心のセマンティック占有予測は、自律運転において重要な役割を果たす。
カメラからのセマンティック占有率を予測するための信頼性を探求する研究は、まだ少ない。
本稿では,カメラによる占有ネットワークの信頼性向上を目的としたReliOccを提案する。
論文 参考訳(メタデータ) (2024-09-26T16:33:16Z) - DRIVE: Dependable Robust Interpretable Visionary Ensemble Framework in Autonomous Driving [1.4104119587524289]
自動運転の最近の進歩は、エンド・ツー・エンドの学習パラダイムへのパラダイムシフトを経験している。
これらのモデルは、しばしば解釈可能性を犠牲にし、信頼、安全、規制の遵守に重大な課題を提起する。
我々は、エンドツーエンドの教師なし運転モデルにおける説明の信頼性と安定性を改善するために設計された総合的なフレームワークDRIVEを紹介する。
論文 参考訳(メタデータ) (2024-09-16T14:40:47Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
本稿では、利用可能なデータからシステムダイナミクスを推定し、仮想モデルロールアウトにおけるポリシー最適化を行うモデルベース強化学習アルゴリズムについて考察する。
このアプローチは、実際のシステムで破滅的な失敗を引き起こす可能性のあるモデルエラーを悪用することに対して脆弱である。
D4RLベンチマークの1つのよく校正された自己回帰モデルにより、より良い性能が得られることを示す。
論文 参考訳(メタデータ) (2024-02-05T10:18:15Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - Reliability in Semantic Segmentation: Are We on the Right Track? [15.0189654919665]
我々は、古いResNetベースのアーキテクチャから新しいトランスフォーマーまで、さまざまなモデルを分析します。
近年のモデルでは, 信頼性は著しく高いが, 不確実性評価の点では, 全体として信頼性は高くない。
これは、ロバストネスと不確実性推定の両方に焦点を当てた現代のセグメンテーションモデルに関する最初の研究である。
論文 参考訳(メタデータ) (2023-03-20T17:38:24Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
自動車再同定は、都市規模の車両分析システムにおいて重要な要素の1つである。
車両再設計のための最先端のソリューションの多くは、既存のre-idベンチマークの精度向上に重点を置いており、計算の複雑さを無視することが多い。
推論時間に1つのネットワークのみを使用する自己教師型学習によって、シンプルで効果的なハイブリッドソリューションを提案する。
論文 参考訳(メタデータ) (2022-05-16T12:14:42Z) - On Efficient Uncertainty Estimation for Resource-Constrained Mobile
Applications [0.0]
予測の不確実性は、モデル予測を補完し、下流タスクの機能を改善します。
Axolotlフレームワークを用いてモンテカルロ・ドロップアウト(MCDO)モデルを構築することでこの問題に対処する。
我々は,(1)CIFAR10データセットを用いた多クラス分類タスク,(2)より複雑な人体セグメンテーションタスクについて実験を行った。
論文 参考訳(メタデータ) (2021-11-11T22:24:15Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
我々は,LiDARをベースとした効率的なエンドツーエンドナビゲーションフレームワークを提案する。
本稿では,スパース畳み込みカーネル最適化とハードウェア対応モデル設計に基づくFast-LiDARNetを提案する。
次に,単一の前方通過のみから予測の不確かさを直接推定するハイブリッド・エビデンシャル・フュージョンを提案する。
論文 参考訳(メタデータ) (2021-05-20T17:52:37Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
画像中の深層学習に基づくサラエント物体検出を容易にするプログレッシブ自己誘導損失関数を提案する。
我々のフレームワークは適応的に集約されたマルチスケール機能を利用して、健全な物体の探索と検出を効果的に行う。
論文 参考訳(メタデータ) (2021-01-07T07:33:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。