論文の概要: Categorical data clustering: 25 years beyond K-modes
- arxiv url: http://arxiv.org/abs/2408.17244v2
- Date: Mon, 9 Sep 2024 13:51:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 23:12:22.464172
- Title: Categorical data clustering: 25 years beyond K-modes
- Title(参考訳): カテゴリ的データクラスタリング:K-modesより25年
- Authors: Tai Dinh, Wong Hauchi, Philippe Fournier-Viger, Daniil Lisik, Minh-Quyet Ha, Hieu-Chi Dam, Van-Nam Huynh,
- Abstract要約: 分類データクラスタリングは、コンピュータ科学において一般的かつ重要なタスクである。
このレビューは、過去25年間のカテゴリデータクラスタリングの総合的な合成を提供する。
これは、健康科学、自然科学、社会科学、教育、工学、経済学など様々な分野における分類学的データクラスタリングの重要な役割を解明するものである。
- 参考スコア(独自算出の注目度): 1.545264698293902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The clustering of categorical data is a common and important task in computer science, offering profound implications across a spectrum of applications. Unlike purely numerical data, categorical data often lack inherent ordering as in nominal data, or have varying levels of order as in ordinal data, thus requiring specialized methodologies for efficient organization and analysis. This review provides a comprehensive synthesis of categorical data clustering in the past twenty-five years, starting from the introduction of K-modes. It elucidates the pivotal role of categorical data clustering in diverse fields such as health sciences, natural sciences, social sciences, education, engineering and economics. Practical comparisons are conducted for algorithms having public implementations, highlighting distinguishing clustering methodologies and revealing the performance of recent algorithms on several benchmark categorical datasets. Finally, challenges and opportunities in the field are discussed.
- Abstract(参考訳): 分類データのクラスタリングはコンピュータ科学において一般的で重要なタスクであり、様々なアプリケーションに深く影響する。
純粋に数値的なデータとは異なり、分類データは名目データのような固有の順序を欠くことが多く、順序データのような様々なレベルの順序を持つため、効率的な組織化と分析のために専門的な方法論が必要である。
このレビューは、K-modesの導入から始まる過去25年間のカテゴリデータクラスタリングを包括的に合成する。
これは、健康科学、自然科学、社会科学、教育、工学、経済学など様々な分野における分類学的データクラスタリングの重要な役割を解明するものである。
複数のベンチマーク分類データセット上で,クラスタリング手法を区別し,最新のアルゴリズムの性能を明らかにする。
最後に、この分野における課題と機会について論じる。
関連論文リスト
- Spectral Clustering of Categorical and Mixed-type Data via Extra Graph
Nodes [0.0]
本稿では,数値情報と分類情報の両方をスペクトルクラスタリングアルゴリズムに組み込むための,より自然な方法について検討する。
データの属する可能性のある異なるカテゴリに対応する追加ノードの追加を提案し、それが解釈可能なクラスタリング対象関数に繋がることを示す。
この単純なフレームワークは、分類のみのデータに対する線形時間スペクトルクラスタリングアルゴリズムに繋がることを示す。
論文 参考訳(メタデータ) (2024-03-08T20:49:49Z) - Incremental hierarchical text clustering methods: a review [49.32130498861987]
本研究の目的は,階層的および漸進的クラスタリング技術の解析である。
本研究の主な貢献は、文書クラスタリングのテキスト化を目的とした、2010年から2018年にかけて出版された研究で使用されるテクニックの組織化と比較である。
論文 参考訳(メタデータ) (2023-12-12T22:27:29Z) - A testing-based approach to assess the clusterability of categorical
data [6.7937877930001775]
TestCatは、分析的な$p$-valueで分類データのクラスタ性を評価するためのテストベースのアプローチである。
提案手法をベンチマーク分類データセットに適用することにより,TestCatが数値データに対してそれらの解より優れていることを示す。
論文 参考訳(メタデータ) (2023-07-14T13:50:00Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) は、部分的にラベル付けされたデータを自動でクラスタリングすることを目的としている。
ラベル付きデータには、ラベル付きデータの既知のカテゴリだけでなく、新しいカテゴリのインスタンスも含まれている。
GCDの効果的な方法の1つは、ラベルなしデータの識別表現を学習するために自己教師付き学習を適用することである。
本稿では,クラスタリングの精度を効果的に向上する動的概念コントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-30T14:04:39Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
クラスタリング分析は、機械学習とデータマイニングにおいて必須の役割を果たす。
ディープ・クラスタリングは、ディープ・ニューラルネットワークを使ってクラスタリングフレンドリーな表現を学習することができるが、幅広いクラスタリングタスクに広く適用されている。
ディープクラスタリングに関する既存の調査は、主にシングルビューフィールドとネットワークアーキテクチャに焦点を当てており、クラスタリングの複雑なアプリケーションシナリオを無視している。
論文 参考訳(メタデータ) (2022-10-09T02:31:32Z) - Detection and Evaluation of Clusters within Sequential Data [58.720142291102135]
Block Markov Chainsのクラスタリングアルゴリズムは理論的最適性を保証する。
特に、私たちのシーケンシャルデータは、ヒトのDNA、テキスト、動物運動データ、金融市場から派生しています。
ブロックマルコフ連鎖モデルの仮定は、実際に探索データ解析において有意義な洞察を得られることが判明した。
論文 参考訳(メタデータ) (2022-10-04T15:22:39Z) - Hybrid Ensemble optimized algorithm based on Genetic Programming for
imbalanced data classification [0.0]
本稿では,2種類の不均衡データ分類のための遺伝的プログラミング(GP)に基づくハイブリッドアンサンブルアルゴリズムを提案する。
実験結果から,提案手法をトレーニングセットのサイズで指定したデータセット上での性能は,マイノリティクラス予測の他の次元よりも40%,50%高い精度を示した。
論文 参考訳(メタデータ) (2021-06-02T14:14:38Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
データ管理研究は、データとアルゴリズムの公平性に関連するトピックに対する存在感と関心が高まっている。
我々は,その正しさ,公平性,効率性,スケーラビリティ,安定性よりも,13の公正な分類アプローチと追加の変種を幅広く分析している。
我々の分析は、異なるメトリクスとハイレベルなアプローチ特性がパフォーマンスの異なる側面に与える影響に関する新しい洞察を強調します。
論文 参考訳(メタデータ) (2021-01-18T22:55:40Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Neural Networks as Functional Classifiers [0.0]
我々は、分類問題のために、注目すべき深層学習手法を機能データ領域に拡張する。
本手法の有効性を,分光データの分類などの多くの分類応用において強調する。
論文 参考訳(メタデータ) (2020-10-09T00:11:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。