Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach
- URL: http://arxiv.org/abs/2408.17258v1
- Date: Fri, 30 Aug 2024 12:56:17 GMT
- Title: Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach
- Authors: Tong Nie, Junlin He, Yuewen Mei, Guoyang Qin, Guilong Li, Jian Sun, Wei Ma,
- Abstract summary: E-commerce and urbanization has significantly intensified delivery operations in urban areas.
Data-driven predictive methods, especially those utilizing machine learning techniques, have emerged to handle these problems.
This paper formulates this problem as a graph-based graph learning learning task.
- Score: 40.357070798871675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of e-commerce and urbanization has significantly intensified delivery operations in urban areas, boosting the volume and complexity of delivery demand. Data-driven predictive methods, especially those utilizing machine learning techniques, have emerged to handle these complexities in urban delivery demand management problems. One particularly pressing problem that has not yet been sufficiently studied is the joint estimation and prediction of city-wide delivery demand. To this end, we formulate this problem as a graph-based spatiotemporal learning task. First, a message-passing neural network model is formalized to capture the interaction between demand patterns of associated regions. Second, by exploiting recent advances in large language models, we extract general geospatial knowledge encodings from the unstructured locational data and integrate them into the demand predictor. Last, to encourage the cross-city transferability of the model, an inductive training scheme is developed in an end-to-end routine. Extensive empirical results on two real-world delivery datasets, including eight cities in China and the US, demonstrate that our model significantly outperforms state-of-the-art baselines in these challenging tasks.
Related papers
- Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction [1.5156879440024378]
Commuting flow prediction is an essential task for municipal operations in the real world.
We develop a heterogeneous graph-based model to generate meaningful region embeddings for predicting different types of inter-level OD flows.
Our proposed model outperforms existing models in terms of a uniform urban structure.
arXiv Detail & Related papers (2024-08-27T03:30:01Z) - SMA-Hyper: Spatiotemporal Multi-View Fusion Hypergraph Learning for Traffic Accident Prediction [2.807532512532818]
Current data-driven models often struggle with data sparsity and the integration of diverse urban data sources.
We introduce a deep dynamic learning framework designed for traffic accident prediction.
It incorporates dual adaptive graph learning mechanisms that enable high-order cross-regional learning.
It also employs an advance attention mechanism to fuse multiple views of accident data and urban functional features.
arXiv Detail & Related papers (2024-07-24T21:10:34Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Spatio-Temporal Few-Shot Learning via Diffusive Neural Network Generation [25.916891462152044]
We propose a novel generative pre-training framework, GPD, for intricate few-shot learning with urban knowledge transfer.
We recast a generative diffusion model, which generates tailored neural networks guided by prompts.
GPD consistently outperforms state-of-the-art baselines on datasets for tasks such as traffic speed prediction and crowd flow prediction.
arXiv Detail & Related papers (2024-02-19T08:11:26Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - From Cities to Series: Complex Networks and Deep Learning for Improved
Spatial and Temporal Analytics* [0.0]
This thesis puts together complex networks and machine learning techniques to improve the understanding of the human phenomena observed in pandemics, pendular migration, and street networks.
We contribute with: (i) a new neural network architecture capable of modeling dynamic processes observed in spatial and temporal data with applications in epidemics propagation, weather forecasting, and patient monitoring in intensive care units; (ii) a machine-learning methodology for analyzing and predicting links in the scope of human mobility between all the cities of Brazil.
arXiv Detail & Related papers (2022-06-01T11:04:11Z) - INTERN: A New Learning Paradigm Towards General Vision [117.3343347061931]
We develop a new learning paradigm named INTERN.
By learning with supervisory signals from multiple sources in multiple stages, the model being trained will develop strong generalizability.
In most cases, our models, adapted with only 10% of the training data in the target domain, outperform the counterparts trained with the full set of data.
arXiv Detail & Related papers (2021-11-16T18:42:50Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods.
We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments.
The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
arXiv Detail & Related papers (2021-11-02T15:48:28Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Modelling Urban Dynamics with Multi-Modal Graph Convolutional Networks [8.767281392253976]
We propose a novel deep learning framework which aims to better model the popularity and growth of urban venues.
We present our deep learning architecture which integrates both spatial and topological features into a temporal model which predicts the demand of a venue at the subsequent time-step.
Relative to state-of-the-art deep learning models, our model reduces the RSME by 28% in London and 13% in Paris.
arXiv Detail & Related papers (2021-04-29T20:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.