Estimation of Cardiac and Non-cardiac Diagnosis from Electrocardiogram Features
- URL: http://arxiv.org/abs/2408.17329v1
- Date: Fri, 30 Aug 2024 14:42:03 GMT
- Title: Estimation of Cardiac and Non-cardiac Diagnosis from Electrocardiogram Features
- Authors: Juan Miguel Lopez Alcaraz, Nils Strodthoff,
- Abstract summary: We use publicly available datasets to investigate the feasibility of inferring general diagnostic conditions from ECG features.
We train a tree-based model (XGBoost) based on ECG features and basic demographic features to estimate a wide range of diagnoses.
- Score: 1.068128849363198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Introduction: Ensuring timely and accurate diagnosis of medical conditions is paramount for effective patient care. Electrocardiogram (ECG) signals are fundamental for evaluating a patient's cardiac health and are readily available. Despite this, little attention has been given to the remarkable potential of ECG data in detecting non-cardiac conditions. Methods: In our study, we used publicly available datasets (MIMIC-IV-ECG-ICD and ECG-VIEW II) to investigate the feasibility of inferring general diagnostic conditions from ECG features. To this end, we trained a tree-based model (XGBoost) based on ECG features and basic demographic features to estimate a wide range of diagnoses, encompassing both cardiac and non-cardiac conditions. Results: Our results demonstrate the reliability of estimating 23 cardiac as well as 21 non-cardiac conditions above 0.7 AUROC in a statistically significant manner across a wide range of physiological categories. Our findings underscore the predictive potential of ECG data in identifying well-known cardiac conditions. However, even more striking, this research represents a pioneering effort in systematically expanding the scope of ECG-based diagnosis to conditions not traditionally associated with the cardiac system.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - Self-supervised Anomaly Detection Pretraining Enhances Long-tail ECG Diagnosis [32.37717219026923]
Current computer-aided ECG diagnostic systems struggle with the underdetection of rare but critical cardiac anomalies.
This study introduces a novel approach using self-supervised anomaly detection pretraining to address this limitation.
The anomaly detection model is specifically designed to detect and localize subtle deviations from normal cardiac patterns.
arXiv Detail & Related papers (2024-08-30T09:48:47Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - Prospects for AI-Enhanced ECG as a Unified Screening Tool for Cardiac and Non-Cardiac Conditions -- An Explorative Study in Emergency Care [0.9503773054285559]
We investigate the capability of a single model to predict a diverse range of both cardiac and non-cardiac discharge diagnoses based on a sole ECG collected in the emergency department.
We find that 253, 81 cardiac, and 172 non-cardiac, ICD codes can be reliably predicted in the sense of exceeding an AUROC score of 0.8 in a statistically significant manner.
arXiv Detail & Related papers (2023-12-18T09:29:42Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
We propose a two-level hierarchical deep learning framework with Generative Adversarial Network (GAN) for automatic diagnosis of ECG signals.
The first-level model is composed of a Memory-Augmented Deep auto-Encoder with GAN, which aims to differentiate abnormal signals from normal ECGs for anomaly detection.
The second-level learning aims at robust multi-class classification for different arrhythmias identification.
arXiv Detail & Related papers (2022-10-19T12:29:05Z) - Analysis of Digitalized ECG Signals Based on Artificial Intelligence and
Spectral Analysis Methods Specialized in ARVC [0.0]
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that appears between the second and forth decade of a patient's life.
The effective and punctual diagnosis of this disease based on Electrocardiograms (ECGs) could have a vital role in reducing premature cardiovascular mortality.
arXiv Detail & Related papers (2022-02-28T13:12:50Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
This study presents a method to detect atrial fibrillation with lead-I ECGs using artificial intelligence.
The aim of the study is to compare the accuracy of the diagnoses estimated by cardiologists and artificial intelligence over lead-I ECGs.
arXiv Detail & Related papers (2021-04-15T12:50:16Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.