論文の概要: Getting Inspiration for Feature Elicitation: App Store- vs. LLM-based Approach
- arxiv url: http://arxiv.org/abs/2408.17404v1
- Date: Fri, 30 Aug 2024 16:42:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 14:36:36.963150
- Title: Getting Inspiration for Feature Elicitation: App Store- vs. LLM-based Approach
- Title(参考訳): App Store vs. LLMベースのアプローチ
- Authors: Jialiang Wei, Anne-Lise Courbis, Thomas Lambolais, Binbin Xu, Pierre Louis Bernard, Gérard Dray, Walid Maalej,
- Abstract要約: AppStoreにインスパイアされた要件適用は、開発者にとって非常に有益であることが証明されている。
ジェネレーティブAIの進歩により、近年の研究は、大規模言語モデル(LLM)にインスパイアされた要求誘発の可能性を示している。
本稿では,AppStore と LLM による機能強化手法の比較研究について報告する。
- 参考スコア(独自算出の注目度): 6.024602799136753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the past decade, app store (AppStore)-inspired requirements elicitation has proven to be highly beneficial. Developers often explore competitors' apps to gather inspiration for new features. With the advance of Generative AI, recent studies have demonstrated the potential of large language model (LLM)-inspired requirements elicitation. LLMs can assist in this process by providing inspiration for new feature ideas. While both approaches are gaining popularity in practice, there is a lack of insight into their differences. We report on a comparative study between AppStore- and LLM-based approaches for refining features into sub-features. By manually analyzing 1,200 sub-features recommended from both approaches, we identified their benefits, challenges, and key differences. While both approaches recommend highly relevant sub-features with clear descriptions, LLMs seem more powerful particularly concerning novel unseen app scopes. Moreover, some recommended features are imaginary with unclear feasibility, which suggests the importance of a human-analyst in the elicitation loop.
- Abstract(参考訳): 過去10年間、App Store(AppStore)にインスパイアされた要件適用は、非常に有益であることが証明された。
開発者はしばしば、新しい機能のインスピレーションを集めるために、競合他社のアプリを調べます。
ジェネレーティブAIの進歩により、近年の研究は、大規模言語モデル(LLM)にインスパイアされた要求誘発の可能性を示している。
LLMは、新しい機能のアイデアにインスピレーションを与えることで、このプロセスを支援することができる。
どちらのアプローチも実際には人気を集めていますが、その違いについての洞察が不足しています。
本稿では,AppStore と LLM による機能強化手法の比較研究について報告する。
両方のアプローチから推奨される1200のサブフィーチャーを手動で分析することで、それらのメリット、課題、重要な違いを特定しました。
どちらのアプローチも、明確に記述された非常に関連性の高いサブフィーチャを推奨しているが、LLMは、特に新しい未確認アプリスコープに関して、より強力に思える。
さらに, 推奨される特徴は, 実現可能性の不明な虚構であり, ユークリエーションループにおける人間分析の重要性が示唆されている。
関連論文リスト
- HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling [21.495443162191332]
大規模言語モデル(LLM)は様々な分野で顕著な成功を収めており、いくつかの研究がレコメンデーションシステムにおいてその可能性を探求している。
逐次レコメンデーションシステムを強化するために,新しい階層型大規模言語モデル (HLLM) アーキテクチャを提案する。
HLLMは,項目特徴抽出とユーザ関心モデリングの両方に 7B パラメータを利用する構成で,優れたスケーラビリティを実現している。
論文 参考訳(メタデータ) (2024-09-19T13:03:07Z) - Fine-tuning Multimodal Large Language Models for Product Bundling [53.01642741096356]
Bundle-MLLMは,大規模言語モデル(LLM)をハイブリットアイテムトークン化アプローチにより微調整する新しいフレームワークである。
具体的には、テキスト、メディア、およびリレーショナルデータを統一トークン化に統合し、テキストトークンと非テキストトークンを区別するソフトな分離トークンを導入する。
1)バンドルパターンを学習し,2)製品バンドル固有のマルチモーダルセマンティック理解の強化を行う。
論文 参考訳(メタデータ) (2024-07-16T13:30:14Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
大規模言語モデル(LLM)は、幅広い汎用タスクを解く際、印象的なゼロショット能力を示した。
LLMは時間的情報の認識と利用に不足しており、シーケンシャルなデータの理解を必要とするタスクではパフォーマンスが悪い。
LLMに基づくシーケンシャルレコメンデーションのために、歴史的相互作用の中で時間情報を利用する3つのプロンプト戦略を提案する。
論文 参考訳(メタデータ) (2024-05-05T00:21:26Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - LLM-Rec: Personalized Recommendation via Prompting Large Language Models [62.481065357472964]
大きな言語モデル(LLM)は、常識的な知識と推論を活用する能力を示した。
大規模言語モデル(LLM)の最近の進歩は、コモンセンスの知識と推論を活用できることを顕著に示している。
本研究では,パーソナライズされたテキストベースのレコメンデーションを改善するために,テキストエンリッチメントの4つの異なる促進戦略を取り入れた新しいアプローチ LLM-Rec を提案する。
論文 参考訳(メタデータ) (2023-07-24T18:47:38Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
大きな言語モデル(LLM)は、印象的な汎用知性と人間のような能力を示している。
我々は,実世界のレコメンデータシステムにおけるパイプライン全体の観点から,この研究の方向性を包括的に調査する。
論文 参考訳(メタデータ) (2023-06-09T11:31:50Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - PALR: Personalization Aware LLMs for Recommendation [7.407353565043918]
PALRは、ユーザ履歴の振る舞い(クリック、購入、評価など)と大きな言語モデル(LLM)を組み合わせることで、ユーザの好むアイテムを生成することを目的としている。
我々のソリューションは、様々なシーケンシャルなレコメンデーションタスクにおいて最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2023-05-12T17:21:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。