論文の概要: EEG Right & Left Voluntary Hand Movement-based Virtual Brain-Computer Interfacing Keyboard with Machine Learning and a Hybrid Bi-Directional LSTM-GRU Model
- arxiv url: http://arxiv.org/abs/2409.00035v1
- Date: Sun, 18 Aug 2024 02:10:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:40:57.121165
- Title: EEG Right & Left Voluntary Hand Movement-based Virtual Brain-Computer Interfacing Keyboard with Machine Learning and a Hybrid Bi-Directional LSTM-GRU Model
- Title(参考訳): 機械学習とハイブリッド双方向LSTM-GRUモデルを用いた脳波右・左手動作に基づく仮想脳-コンピュータインターフェースキーボード
- Authors: Biplov Paneru, Bishwash Paneru, Sanjog Chhetri Sapkota,
- Abstract要約: 本研究は,脳波に基づくキーストローク検出のためのBMIに焦点を当てた。
キーストロークをシミュレートし予測するための信頼性の高い脳-コンピュータインタフェース(BCI)を開発することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study focuses on EEG-based BMI for detecting voluntary keystrokes, aiming to develop a reliable brain-computer interface (BCI) to simulate and anticipate keystrokes, especially for individuals with motor impairments. The methodology includes extensive segmentation, event alignment, ERP plot analysis, and signal analysis. Different deep learning models are trained to classify EEG data into three categories -- `resting state' (0), `d' key press (1), and `l' key press (2). Real-time keypress simulation based on neural activity is enabled through integration with a tkinter-based graphical user interface. Feature engineering utilized ERP windows, and the SVC model achieved 90.42% accuracy in event classification. Additionally, deep learning models -- MLP (89% accuracy), Catboost (87.39% accuracy), KNN (72.59%), Gaussian Naive Bayes (79.21%), Logistic Regression (90.81% accuracy), and a novel Bi-Directional LSTM-GRU hybrid model (89% accuracy) -- were developed for BCI keyboard simulation. Finally, a GUI was created to predict and simulate keystrokes using the trained MLP model.
- Abstract(参考訳): 本研究は,脳波を用いた随意性キーストローク検出のためのBMIに着目し,特に運動障害のある人を対象に,キーストロークをシミュレートし予測するための信頼性の高い脳-コンピュータインタフェース(BCI)を開発することを目的とする。
この手法には、広範囲なセグメンテーション、イベントアライメント、ERPプロット分析、信号解析が含まれる。
異なるディープラーニングモデルは、脳波データを、'resting state' (0)、'd' key press (1)、'l' key press (2)の3つのカテゴリに分類するように訓練される。
トキンタベースのグラフィカルユーザインタフェースとの統合により、ニューラルアクティビティに基づくリアルタイムキープレスシミュレーションが実現される。
特徴工学はERPウィンドウを利用し、SVCモデルはイベント分類において90.42%の精度を達成した。
さらに、BCIキーボードシミュレーションのために、MLP (89%の精度)、Catboost (87.39%の精度)、KNN (72.59%)、Gaussian Naive Bayes (79.21%)、Logistic Regression (90.81%の精度)、新しいBi-Directional LSTM-GRUハイブリッドモデル (89%の精度)が開発された。
最後に、トレーニングされたMLPモデルを使用してキーストロークを予測し、シミュレートするGUIが作成された。
関連論文リスト
- CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
交互注意(CEReBrO)を用いた脳振動の表現のための圧縮法について紹介する。
トークン化方式は、チャネルごとのパッチで脳波信号を表現します。
本研究では,チャネル内時間的ダイナミックスとチャネル間空間的相関を共同でモデル化し,通常の自己アテンションに比べて6倍少ないメモリで2倍の速度向上を実現するための注意機構を提案する。
論文 参考訳(メタデータ) (2025-01-18T21:44:38Z) - Hybrid Quantum Deep Learning Model for Emotion Detection using raw EEG Signal Analysis [0.0]
本研究は、感情認識のためのハイブリッド量子深層学習技術を提案する。
従来の脳波に基づく感情認識技術はノイズと高次元データ複雑さによって制限される。
このモデルは、リアルタイムアプリケーションと将来の研究におけるマルチクラス分類のために拡張される予定である。
論文 参考訳(メタデータ) (2024-11-19T17:44:04Z) - emg2qwerty: A Large Dataset with Baselines for Touch Typing using Surface Electromyography [47.160223334501126]
emg2qwertyは、QWERTYキーボードでタッチ入力しながら手首に記録された非侵襲的筋電図信号の大規模なデータセットである。
1,135のセッションが108ユーザと346時間の録画にまたがっており、これまでで最大の公開データセットである。
sEMG信号のみを用いたキープレッシャの予測において,高いベースライン性能を示す。
論文 参考訳(メタデータ) (2024-10-26T05:18:48Z) - EEG Emotion Copilot: Optimizing Lightweight LLMs for Emotional EEG Interpretation with Assisted Medical Record Generation [12.707059419820848]
本稿では,脳波信号から直接感情状態を認識する脳波感情コパイロットについて述べる。
その後、パーソナライズされた診断と治療の提案を生成し、最終的に支援された電子カルテの自動化をサポートする。
提案手法は,医療分野における情動コンピューティングの適用を推し進めることが期待される。
論文 参考訳(メタデータ) (2024-09-30T19:15:05Z) - On-device Learning of EEGNet-based Network For Wearable Motor Imagery Brain-Computer Interface [2.1710886744493263]
本稿では,ウェアラブルモータ画像認識のための軽量で効率的なオンデバイス学習エンジンを実装した。
我々は,メモリフットプリントが15.6KByteのベースラインに対して,最大7.31%の顕著な精度向上を示した。
我々の調整されたアプローチは、オンライントレーニング中に1回の推論で14.9ms、0.76mJ、1回の推測で20us、0.83uJの推論時間を示す。
論文 参考訳(メタデータ) (2024-08-25T08:23:51Z) - Enhancing EEG-to-Text Decoding through Transferable Representations from Pre-trained Contrastive EEG-Text Masked Autoencoder [69.7813498468116]
コントラスト型脳波テキストマスケード自動エンコーダ(CET-MAE)を提案する。
また、E2T-PTR(Pretrained Transferable Representationsを用いたEEG-to-Text decoding)と呼ばれるフレームワークを開発し、EEGシーケンスからテキストをデコードする。
論文 参考訳(メタデータ) (2024-02-27T11:45:21Z) - A Convolutional Spiking Network for Gesture Recognition in
Brain-Computer Interfaces [0.8122270502556371]
脳信号に基づく手振り分類の例題問題に対して,簡単な機械学習に基づくアプローチを提案する。
本手法は脳波データとECoGデータの両方で異なる対象に一般化し,92.74-97.07%の範囲で精度が向上することを示した。
論文 参考訳(メタデータ) (2023-04-21T16:23:40Z) - A Hybrid Brain-Computer Interface Using Motor Imagery and SSVEP Based on
Convolutional Neural Network [0.9176056742068814]
本稿では,2ストリーム畳み込みニューラルネットワーク(TSCNN)を用いたハイブリッド脳-コンピュータインタフェースを提案する。
定常視覚誘発電位(SSVEP)と運動画像(MI)のパラダイムを組み合わせる。
TSCNNはトレーニングプロセスの2つのパラダイムにおいて、自動的に脳波の特徴を抽出する。
論文 参考訳(メタデータ) (2022-12-10T12:34:36Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
我々は、診断とBCI(Brain-Computer-Interface)に関する2つの伝達学習課題を設計する。
第1タスクは、患者全体にわたる自動睡眠ステージアノテーションに対処する医療診断に重点を置いている。
タスク2はBrain-Computer Interface (BCI)に集中しており、被験者とデータセットの両方にわたる運動画像のデコードに対処する。
論文 参考訳(メタデータ) (2022-02-14T12:12:20Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) はユーザとシステム間の強力なコミュニケーションツールである。
近年の技術進歩は、脳波(EEG)に基づく翻訳医療用BCIへの関心が高まっている。
論文 参考訳(メタデータ) (2020-01-28T10:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。