論文の概要: EEG-based AI-BCI Wheelchair Advancement: A Brain-Computer Interfacing Wheelchair System Using Machine Learning Mechanism with Right and Left Voluntary Hand Movement
- arxiv url: http://arxiv.org/abs/2410.09763v1
- Date: Sun, 13 Oct 2024 07:41:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 05:02:48.421293
- Title: EEG-based AI-BCI Wheelchair Advancement: A Brain-Computer Interfacing Wheelchair System Using Machine Learning Mechanism with Right and Left Voluntary Hand Movement
- Title(参考訳): 脳波をベースとしたAI-BCIホイールチェアの進化: 左右自家動作の機械学習機構を用いた脳-コンピュータ対面ホイールチェアシステム
- Authors: Biplov Paneru, Bishwash Paneru, Khem Narayan Poudyal,
- Abstract要約: このシステムは、自発的な左右の動きに基づいて車椅子のナビゲーションをシミュレートするように設計されている。
Support Vector Machines (SVM)、XGBoost、ランダムフォレスト、双方向長短期記憶(Bi-LSTM)アテンションベースモデルなど、さまざまな機械学習モデルを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an Artificial Intelligence (AI) integrated novel approach to Brain-Computer Interface (BCI)-based wheelchair development, utilizing a voluntary Right Left Hand Movement mechanism for control. The system is designed to simulate wheelchair navigation based on voluntary right and left-hand movements using electroencephalogram (EEG) data. A pre-filtered dataset, obtained from an open-source EEG repository, was segmented into arrays of 19x200 to capture the onset of hand movements. The data was acquired at a sampling frequency 200Hz in the laboratory experiment. The system integrates a Tkinter-based interface for simulating wheelchair movements, offering users a functional and intuitive control system. Various machine learning models, including Support Vector Machines (SVM), XGBoost, random forest, and a Bi-directional Long Short-Term Memory (Bi-LSTM) attention-based model, were developed. The random forest model obtained 79% accuracy. Great performance was seen on the Logistic Regression model which outperforms other models with 92% accuracy and 91% accuracy on the Multi-Layer Perceptron (MLP) model. The Bi-LSTM attention-based model achieved a mean accuracy of 86% through cross-validation, showcasing the potential of attention mechanisms in BCI applications.
- Abstract(参考訳): 本稿では,脳-コンピュータインタフェース(BCI)を用いた車椅子開発における人工知能(AI)の統合的アプローチについて述べる。
このシステムは、脳波(EEG)データを用いて、随意の左右の動きに基づいて車椅子のナビゲーションをシミュレートするように設計されている。
オープンソースのEEGリポジトリから得られた事前フィルタリングデータセットは、手の動きの開始をキャプチャするために19x200の配列に分割された。
データは実験室実験でサンプリング周波数200Hzで取得された。
このシステムは、車椅子の動きをシミュレートするためのTkinterベースのインターフェースを統合し、ユーザーが機能的で直感的な制御システムを提供する。
Support Vector Machines (SVM)、XGBoost、ランダムフォレスト、双方向長短期記憶(Bi-LSTM)アテンションベースモデルなど、さまざまな機械学習モデルを開発した。
ランダム森林モデルでは79%の精度が得られた。
Logistic Regressionモデルでは、Multi-Layer Perceptron(MLP)モデルでは92%の精度と91%の精度で、他のモデルよりも優れたパフォーマンスが見られた。
Bi-LSTMアテンションベースモデルは,クロスバリデーションにより平均86%の精度を達成し,BCI応用におけるアテンションメカニズムの可能性を示した。
関連論文リスト
- Helpful DoggyBot: Open-World Object Fetching using Legged Robots and Vision-Language Models [63.89598561397856]
室内環境における四足歩行操作のためのシステムを提案する。
オブジェクト操作にはフロントマウントのグリップを使用しており、アジャイルスキルにエゴセントリックな深さを使ってシミュレーションでトレーニングされた低レベルのコントローラである。
実世界のデータ収集やトレーニングを行なわずに、2つの目に見えない環境でシステムを評価する。
論文 参考訳(メタデータ) (2024-09-30T20:58:38Z) - Battle of the Backbones: A Large-Scale Comparison of Pretrained Models
across Computer Vision Tasks [139.3768582233067]
Battle of the Backbones (BoB)は、ニューラルネットワークベースのコンピュータビジョンシステムのためのベンチマークツールである。
視覚変換器(ViT)と自己教師型学習(SSL)がますます人気になっている。
同じアーキテクチャと同じようなサイズの事前トレーニングデータセット上でのアップルとアプリケーションの比較では、SSLバックボーンは極めて競争力があることが分かりました。
論文 参考訳(メタデータ) (2023-10-30T18:23:58Z) - Sequential Best-Arm Identification with Application to Brain-Computer
Interface [34.87975833920409]
脳コンピュータインタフェース(BCI)は、脳と外部デバイスまたはコンピュータシステムとの直接通信を可能にする技術である。
脳波(EEG)と事象関連電位(ERP)に基づくスペルシステム(ERP)は、物理キーボードを使わずに単語をスペルできるBCIの一種である。
本稿では,固定信頼度設定と固定予算設定の下での逐次トップ2トンプソンサンプリング(STTS)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-17T18:49:44Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Hybrid Paradigm-based Brain-Computer Interface for Robotic Arm Control [0.9176056742068814]
脳コンピュータインタフェース(BCI)は、脳信号を使って外部デバイスと実際の制御なしに通信する。
本稿では,ハイブリッドパラダイムによる脳波信号によるロボットアーム操作のための知識蒸留に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-14T08:13:10Z) - FingerFlex: Inferring Finger Trajectories from ECoG signals [68.8204255655161]
FingerFlexモデル(FingerFlex model)は、脳波(ECoG)データに対する指の動きの回帰に適応した畳み込みエンコーダ・デコーダアーキテクチャである。
実測軌道と予測軌道の相関係数が最大0.74であるBCIコンペティションIVデータセット4で最先端の性能が達成された。
論文 参考訳(メタデータ) (2022-10-23T16:26:01Z) - Toward smart composites: small-scale, untethered prediction and control
for soft sensor/actuator systems [0.6465251961564604]
組込みマイクロコントローラユニット(MCU)を用いたセンサ/アクチュエータシステムのモデル予測制御のためのアルゴリズムとツールについて述べる。
これらのMCUはセンサーやアクチュエータと組み合わせることで、自律的な動作が可能な新しいタイプのスマートコンポジットを可能にする。
オンラインNewton-Raphson最適化は制御入力を最適化する。
論文 参考訳(メタデータ) (2022-05-22T22:19:09Z) - Bayesian Optimization and Deep Learning forsteering wheel angle
prediction [58.720142291102135]
本研究の目的は,自動走行システムにおける操舵角度予測の精度の高いモデルを得ることである。
BOは限られた試行数で、BOST-LSTMと呼ばれるモデルを特定し、古典的なエンドツーエンド駆動モデルと比較して最も正確な結果を得た。
論文 参考訳(メタデータ) (2021-10-22T15:25:14Z) - Wheelchair automation by a hybrid BCI system using SSVEP and eye blinks [1.1099588962062936]
プロトタイプは、定常的に視覚的に誘発される電位と眼の点滅の複合メカニズムに基づいている。
プロトタイプは、ユーザを不快にさせることなく、家庭環境で効率的に使用することができる。
論文 参考訳(メタデータ) (2021-06-10T08:02:31Z) - BeCAPTCHA-Mouse: Synthetic Mouse Trajectories and Improved Bot Detection [78.11535724645702]
本稿では,マウスの神経運動モデルに基づくボット検出器BeCAPTCHA-Mouseを提案する。
BeCAPTCHA-Mouseは、1つのマウス軌道だけで、平均93%の精度で高実在性のボット軌道を検出することができる。
論文 参考訳(メタデータ) (2020-05-02T17:40:49Z) - Brain-based control of car infotainment [0.0]
本稿では,自動車のインフォテインメントメニューを制御するために,イベント関連電位(ERP)をランダムな実験パラダイムで誘導する,BCI(Brain-Computer Interface)を提案する。
対象特定モデルは、ターゲット刺激と非ターゲット刺激に対する脳波応答を分類するために、異なる機械学習アプローチで訓練された。
実験室内トレーニングセットと車内トレーニングセットのCAと,これらの条件における脳波反応の統計的差異は認められなかった。
論文 参考訳(メタデータ) (2020-04-24T20:32:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。