EEG Right & Left Voluntary Hand Movement-based Virtual Brain-Computer Interfacing Keyboard Using Hybrid Deep Learning Approach
- URL: http://arxiv.org/abs/2409.00035v3
- Date: Tue, 22 Apr 2025 15:28:28 GMT
- Title: EEG Right & Left Voluntary Hand Movement-based Virtual Brain-Computer Interfacing Keyboard Using Hybrid Deep Learning Approach
- Authors: Biplov Paneru, Bipul Thapa, Bishwash Paneru, Sanjog Chhetri Sapkota,
- Abstract summary: We develop an EEG-based BMI system capable of accurately identifying voluntary keystrokes.<n>Our approach employs a hybrid neural network architecture with BiGRU-Attention as the proposed model for interpreting EEG signals.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain-machine interfaces (BMIs), particularly those based on electroencephalography (EEG), offer promising solutions for assisting individuals with motor disabilities. However, challenges in reliably interpreting EEG signals for specific tasks, such as simulating keystrokes, persist due to the complexity and variability of brain activity. Current EEG-based BMIs face limitations in adaptability, usability, and robustness, especially in applications like virtual keyboards, as traditional machine-learning models struggle to handle high-dimensional EEG data effectively. To address these gaps, we developed an EEG-based BMI system capable of accurately identifying voluntary keystrokes, specifically leveraging right and left voluntary hand movements. Using a publicly available EEG dataset, the signals were pre-processed with band-pass filtering, segmented into 22-electrode arrays, and refined into event-related potential (ERP) windows, resulting in a 19x200 feature array categorized into three classes: resting state (0), 'd' key press (1), and 'l' key press (2). Our approach employs a hybrid neural network architecture with BiGRU-Attention as the proposed model for interpreting EEG signals, achieving superior test accuracy of 90% and a mean accuracy of 91% in 10-fold stratified cross-validation. This performance outperforms traditional ML methods like Support Vector Machines (SVMs) and Naive Bayes, as well as advanced architectures such as Transformers, CNN-Transformer hybrids, and EEGNet. Finally, the BiGRU-Attention model is integrated into a real-time graphical user interface (GUI) to simulate and predict keystrokes from brain activity. Our work demonstrates how deep learning can advance EEG-based BMI systems by addressing the challenges of signal interpretation and classification.
Related papers
- BioSerenity-E1: a self-supervised EEG model for medical applications [0.0]
BioSerenity-E1 is a family of self-supervised foundation models for clinical EEG applications.
It combines spectral tokenization with masked prediction to achieve state-of-the-art performance across relevant diagnostic tasks.
arXiv Detail & Related papers (2025-03-13T13:42:46Z) - CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
We introduce a Compact for Representations of Brain Oscillations using alternating attention (CEReBrO)
Our tokenization scheme represents EEG signals at a per-channel patch.
We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention.
arXiv Detail & Related papers (2025-01-18T21:44:38Z) - Hybrid Quantum Deep Learning Model for Emotion Detection using raw EEG Signal Analysis [0.0]
This work presents a hybrid quantum deep learning technique for emotion recognition.
Conventional EEG-based emotion recognition techniques are limited by noise and high-dimensional data complexity.
The model will be extended for real-time applications and multi-class categorization in future study.
arXiv Detail & Related papers (2024-11-19T17:44:04Z) - What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - emg2qwerty: A Large Dataset with Baselines for Touch Typing using Surface Electromyography [47.160223334501126]
emg2qwerty is a large-scale dataset of non-invasive electromyographic signals recorded at the wrists while touch typing on a QWERTY keyboard.
With 1,135 sessions spanning 108 users and 346 hours of recording, this is the largest such public dataset to date.
We show strong baseline performance on predicting key-presses using sEMG signals alone.
arXiv Detail & Related papers (2024-10-26T05:18:48Z) - EEG-based AI-BCI Wheelchair Advancement: A Brain-Computer Interfacing Wheelchair System Using Machine Learning Mechanism with Right and Left Voluntary Hand Movement [0.0]
The system is designed to simulate wheelchair navigation based on voluntary right and left-hand movements.
Various machine learning models, including Support Vector Machines (SVM), XGBoost, random forest, and a Bi-directional Long Short-Term Memory (Bi-LSTM) attention-based model, were developed.
arXiv Detail & Related papers (2024-10-13T07:41:37Z) - Intelligent Energy Management: Remaining Useful Life Prediction and
Charging Automation System Comprised of Deep Learning and the Internet of
Things [0.0]
Remaining Useful Life (RUL) of battery is an important parameter to know the battery's remaining life and need for recharge.
The goal of this research project is to develop machine learning-based models for the battery RUL dataset.
arXiv Detail & Related papers (2024-09-26T15:08:38Z) - On-device Learning of EEGNet-based Network For Wearable Motor Imagery Brain-Computer Interface [2.1710886744493263]
This paper implements a lightweight and efficient on-device learning engine for wearable motor imagery recognition.
We demonstrate a remarkable accuracy gain of up to 7.31% with respect to the baseline with a memory footprint of 15.6 KByte.
Our tailored approach exhibits inference time of 14.9 ms and 0.76 mJ per single inference and 20 us and 0.83 uJ per single update during online training.
arXiv Detail & Related papers (2024-08-25T08:23:51Z) - Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study [61.64685376882383]
Counterfactual learning to rank (CLTR) has attracted extensive attention in the IR community for its ability to leverage massive logged user interaction data to train ranking models.
This paper investigates the robustness of existing CLTR models in complex and diverse situations.
We find that the DLA models and IPS-DCM show better robustness under various simulation settings than IPS-PBM and PRS with offline propensity estimation.
arXiv Detail & Related papers (2024-04-04T10:54:38Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - Enhancing EEG-to-Text Decoding through Transferable Representations from Pre-trained Contrastive EEG-Text Masked Autoencoder [69.7813498468116]
We propose Contrastive EEG-Text Masked Autoencoder (CET-MAE), a novel model that orchestrates compound self-supervised learning across and within EEG and text.
We also develop a framework called E2T-PTR (EEG-to-Text decoding using Pretrained Transferable Representations) to decode text from EEG sequences.
arXiv Detail & Related papers (2024-02-27T11:45:21Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - A Convolutional Spiking Network for Gesture Recognition in
Brain-Computer Interfaces [0.8122270502556371]
We propose a simple yet efficient machine learning-based approach for the exemplary problem of hand gesture classification based on brain signals.
We demonstrate that this approach generalizes to different subjects with both EEG and ECoG data and achieves superior accuracy in the range of 92.74-97.07%.
arXiv Detail & Related papers (2023-04-21T16:23:40Z) - A Hybrid Brain-Computer Interface Using Motor Imagery and SSVEP Based on
Convolutional Neural Network [0.9176056742068814]
We propose a two-stream convolutional neural network (TSCNN) based hybrid brain-computer interface.
It combines steady-state visual evoked potential (SSVEP) and motor imagery (MI) paradigms.
TSCNN automatically learns to extract EEG features in the two paradigms in the training process.
arXiv Detail & Related papers (2022-12-10T12:34:36Z) - FINETUNA: Fine-tuning Accelerated Molecular Simulations [5.543169726358164]
We present an online active learning framework for accelerating the simulation of atomic systems efficiently and accurately.
A method of transfer learning to incorporate prior information from pre-trained models accelerates simulations by reducing the number of DFT calculations by 91%.
Experiments on 30 benchmark adsorbate-catalyst systems show that our method of transfer learning to incorporate prior information from pre-trained models accelerates simulations by reducing the number of DFT calculations by 91%.
arXiv Detail & Related papers (2022-05-02T21:36:01Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
We design two transfer learning challenges around diagnostics and Brain-Computer-Interfacing (BCI)
Task 1 is centred on medical diagnostics, addressing automatic sleep stage annotation across subjects.
Task 2 is centred on Brain-Computer Interfacing (BCI), addressing motor imagery decoding across both subjects and data sets.
arXiv Detail & Related papers (2022-02-14T12:12:20Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
We make use of a deep learning tool, knowledge-based neural ordinary differential equations (KNODE), to augment a model obtained from first principles.
The resulting hybrid model encompasses both a nominal first-principle model and a neural network learnt from simulated or real-world experimental data.
To improve closed-loop performance, the hybrid model is integrated into a novel MPC framework, known as KNODE-MPC.
arXiv Detail & Related papers (2021-09-10T12:09:18Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - AutoFIS: Automatic Feature Interaction Selection in Factorization Models
for Click-Through Rate Prediction [75.16836697734995]
We propose a two-stage algorithm called Automatic Feature Interaction Selection (AutoFIS)
AutoFIS can automatically identify important feature interactions for factorization models with computational cost just equivalent to training the target model to convergence.
AutoFIS has been deployed onto the training platform of Huawei App Store recommendation service.
arXiv Detail & Related papers (2020-03-25T06:53:54Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) is a powerful communication tool between users and systems.
Recent technological advances have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications.
arXiv Detail & Related papers (2020-01-28T10:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.