OnDiscuss: An Epistemic Network Analysis Learning Analytics Visualization Tool for Evaluating Asynchronous Online Discussions
- URL: http://arxiv.org/abs/2409.00051v1
- Date: Mon, 19 Aug 2024 21:23:11 GMT
- Title: OnDiscuss: An Epistemic Network Analysis Learning Analytics Visualization Tool for Evaluating Asynchronous Online Discussions
- Authors: Yanye Luther, Marcia Moraes, Sudipto Ghosh, James Folkestad,
- Abstract summary: OnDiscuss is a learning analytics visualization tool for instructors that utilize text mining algorithms and Epistemic Network Analysis (ENA)
Text mining is used to generate an initial codebook for the instructor as well as automatically code the data.
This tool allows instructors to edit their codebook and then dynamically view the resulting ENA networks for the entire class and individual students.
- Score: 0.49998148477760973
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Asynchronous online discussions are common assignments in both hybrid and online courses to promote critical thinking and collaboration among students. However, the evaluation of these assignments can require considerable time and effort from instructors. We created OnDiscuss, a learning analytics visualization tool for instructors that utilizes text mining algorithms and Epistemic Network Analysis (ENA) to generate visualizations of student discussion data. Text mining is used to generate an initial codebook for the instructor as well as automatically code the data. This tool allows instructors to edit their codebook and then dynamically view the resulting ENA networks for the entire class and individual students. Through empirical investigation, we assess this tool's effectiveness to help instructors in analyzing asynchronous online discussion assignments.
Related papers
- Generating Situated Reflection Triggers about Alternative Solution Paths: A Case Study of Generative AI for Computer-Supported Collaborative Learning [3.2721068185888127]
We present a proof-of-concept application to offer students dynamic and contextualized feedback.
Specifically, we augment an Online Programming Exercise bot for a college-level Cloud Computing course with ChatGPT.
We demonstrate that LLMs can be used to generate highly situated reflection triggers that incorporate details of the collaborative discussion happening in context.
arXiv Detail & Related papers (2024-04-28T17:56:14Z) - Mining patterns in syntax trees to automate code reviews of student solutions for programming exercises [0.0]
We introduce ECHO, a machine learning method to automate the reuse of feedback in educational code reviews.
Based on annotations from both automated linting tools and human reviewers, we show that ECHO can accurately and quickly predict appropriate feedback annotations.
arXiv Detail & Related papers (2024-04-26T14:03:19Z) - Combining Automatic Coding and Instructor Input to Generate ENA
Visualizations for Asynchronous Online Discussion [0.0]
We present an approach that uses Latent Dirichlet Analysis (LDA) and the instructor's keywords to automatically extract codes from a relatively small dataset.
We use the generated codes to build an Epistemic Network Analysis (ENA) model and compare this model with a previous ENA model built by human coders.
arXiv Detail & Related papers (2023-08-22T20:42:18Z) - MathDial: A Dialogue Tutoring Dataset with Rich Pedagogical Properties
Grounded in Math Reasoning Problems [74.73881579517055]
We propose a framework to generate such dialogues by pairing human teachers with a Large Language Model prompted to represent common student errors.
We describe how we use this framework to collect MathDial, a dataset of 3k one-to-one teacher-student tutoring dialogues.
arXiv Detail & Related papers (2023-05-23T21:44:56Z) - DinoSR: Self-Distillation and Online Clustering for Self-supervised
Speech Representation Learning [140.96990096377127]
We introduce self-distillation and online clustering for self-supervised speech representation learning (DinoSR)
DinoSR first extracts contextualized embeddings from the input audio with a teacher network, then runs an online clustering system on the embeddings to yield a machine-discovered phone inventory, and finally uses the discretized tokens to guide a student network.
We show that DinoSR surpasses previous state-of-the-art performance in several downstream tasks, and provide a detailed analysis of the model and the learned discrete units.
arXiv Detail & Related papers (2023-05-17T07:23:46Z) - SYNERGY: Building Task Bots at Scale Using Symbolic Knowledge and
Machine Teaching [75.87418236410296]
SYNERGY is a hybrid learning framework where a task bot is developed in two steps.
A pre-trained neural dialog model, SOLOIST, is fine-tuned on the simulated dialogs to build a bot for the task.
The fine-tuned neural dialog model is continually refined with a handful of real task-specific dialogs via machine teaching.
arXiv Detail & Related papers (2021-10-21T23:13:04Z) - Demonstrating REACT: a Real-time Educational AI-powered Classroom Tool [0.9899017174990579]
We present a new Real-time Educational AI-powered Classroom Tool that employs EDM techniques for supporting the decision-making process of educators.
ReACT is a data-driven tool with a user-friendly graphical interface.
It analyzes students' performance data and provides context-based alerts as well as recommendations to educators for course planning.
arXiv Detail & Related papers (2021-07-30T03:09:59Z) - Graph Consistency based Mean-Teaching for Unsupervised Domain Adaptive
Person Re-Identification [54.58165777717885]
This paper proposes a Graph Consistency based Mean-Teaching (GCMT) method with constructing the Graph Consistency Constraint (GCC) between teacher and student networks.
Experiments on three datasets, i.e., Market-1501, DukeMTMCreID, and MSMT17, show that proposed GCMT outperforms state-of-the-art methods by clear margin.
arXiv Detail & Related papers (2021-05-11T04:09:49Z) - Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network [56.62345811216183]
We propose a novel approach using Graph Neural Networks (GNNs) to achieve better student performance prediction in interactive online question pools.
Specifically, we model the relationship between students and questions using student interactions to construct the student-interaction-question network.
We evaluate the effectiveness of our approach on a real-world dataset consisting of 104,113 mouse trajectories generated in the problem-solving process of over 4000 students on 1631 questions.
arXiv Detail & Related papers (2020-08-04T14:55:32Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
We build an end-to-end neural framework that automatically detects questions from teachers' audio recordings.
By incorporating multi-task learning techniques, we are able to strengthen the understanding of semantic relations among different types of questions.
arXiv Detail & Related papers (2020-05-16T02:17:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.