論文の概要: Quantum Kernel Principal Components Analysis for Compact Readout of Chemiresistive Sensor Arrays
- arxiv url: http://arxiv.org/abs/2409.00115v1
- Date: Wed, 28 Aug 2024 04:07:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:11:32.887395
- Title: Quantum Kernel Principal Components Analysis for Compact Readout of Chemiresistive Sensor Arrays
- Title(参考訳): ケミレジスト型センサアレイの小型読み出しのための量子カーネル主成分分析
- Authors: Zeheng Wang, Timothy van der Laan, Muhammad Usman,
- Abstract要約: 量子主成分分析(qPCA)を情報保持性を高めるための優れた代替手段として提案する。
これらの結果から,qPCAは様々な機械学習モデルタスクにおいて,cPCAよりも優れていた。
その結果、実世界のIoTアプリケーションでデータ処理に革命をもたらすため、ノイズの多い中間スケール量子コンピュータ(NISQ)の可能性を浮き彫りにした。
- 参考スコア(独自算出の注目度): 0.6435156676256051
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid growth of Internet of Things (IoT) devices necessitates efficient data compression techniques to handle the vast amounts of data generated by these devices. In this context, chemiresistive sensor arrays (CSAs), a simple-to-fabricate but crucial component in IoT systems, generate large volumes of data due to their simultaneous multi-sensor operations. Classical principal component analysis (cPCA) methods, a common solution to the data compression challenge, face limitations in preserving critical information during dimensionality reduction. In this study, we present quantum principal component analysis (qPCA) as a superior alternative to enhance information retention. Our findings demonstrate that qPCA outperforms cPCA in various back-end machine-learning modeling tasks, particularly in low-dimensional scenarios when limited Quantum bits (qubits) can be accessed. These results underscore the potential of noisy intermediate-scale quantum (NISQ) computers, despite current qubit limitations, to revolutionize data processing in real-world IoT applications, particularly in enhancing the efficiency and reliability of CSA data compression and readout.
- Abstract(参考訳): モノのインターネット(IoT)デバイスの急速な成長は、これらのデバイスによって生成される膨大なデータを扱うために、効率的なデータ圧縮技術を必要とする。
このような状況下では、シンプルでファブリケートで重要なIoTシステムコンポーネントであるCSA(chemiresistive Sensor Arrays)は、同時マルチセンサー操作のために大量のデータを生成する。
データ圧縮問題に対する共通解である古典的主成分分析(cPCA)法は、次元減少時に臨界情報を保存する際の限界に直面している。
本研究では,量子主成分分析(qPCA)を情報保持性を高めるための優れた代替手段として提示する。
特に量子ビット(量子ビット)に制限された場合の低次元シナリオでは,qPCAがcPCAより優れていることが示唆された。
これらの結果は、現在の量子ビット制限にもかかわらず、特にCSAデータ圧縮と読み込みの効率と信頼性を高めるために、現実のIoTアプリケーションにおけるデータ処理に革命をもたらす、ノイズの多い中間スケール量子コンピュータ(NISQ)の可能性を強調している。
関連論文リスト
- CompressedMediQ: Hybrid Quantum Machine Learning Pipeline for High-Dimensional Neuroimaging Data [1.3359321655273804]
本稿では,新しいハイブリッド量子古典型機械学習パイプラインであるCompressedMediQを紹介する。
高次元のマルチクラス・ニューロイメージングデータ解析に関連する計算課題に対処する。
論文 参考訳(メタデータ) (2024-09-13T07:03:01Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - Computationally and Memory-Efficient Robust Predictive Analytics Using Big Data [0.0]
本研究では、データ不確実性、ストレージ制限、ビッグデータを用いた予測データ駆動モデリングの課題をナビゲートする。
本稿では,ロバスト主成分分析(RPCA)を有効ノイズ低減と外乱除去に利用し,最適センサ配置(OSP)を効率的なデータ圧縮・記憶に活用する。
論文 参考訳(メタデータ) (2024-03-27T22:39:08Z) - Streaming IoT Data and the Quantum Edge: A Classic/Quantum Machine
Learning Use Case [0.6554326244334868]
量子機械学習を分散コンピューティング連続体に統合するためのエッジコンピューティングの利用について検討する。
我々は,IoTシナリオにおける量子機械学習分析の予備的結果を示す。
論文 参考訳(メタデータ) (2024-02-23T10:36:22Z) - Energy-Efficient Edge Learning via Joint Data Deepening-and-Prefetching [9.468399367975984]
我々は、JD2P(Joint Data Deepening-and-Prefetching)と呼ばれる新しいオフロードアーキテクチャを提案する。
JD2Pは2つの主要な技術からなる機能ごとのオフロードである。
MNISTデータセットを用いてJD2Pの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-19T08:12:47Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - PCBDet: An Efficient Deep Neural Network Object Detection Architecture
for Automatic PCB Component Detection on the Edge [48.7576911714538]
PCBDetは、最先端の推論スループットを提供するアテンションコンデンサネットワーク設計である。
他の最先端のアーキテクチャ設計に比べて優れたPCBコンポーネント検出性能を実現している。
論文 参考訳(メタデータ) (2023-01-23T04:34:25Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
本稿では,QRCとQELMをモデル化するフレームワークを提案する。
我々の分析は、QELMとQRCの両方の機能と限界をより深く理解するための道を開いた。
論文 参考訳(メタデータ) (2022-10-03T09:32:28Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - The Synergy of Complex Event Processing and Tiny Machine Learning in
Industrial IoT [7.172671995820974]
IIoT(Industrial Internet-of-Things)は、工場運営の効率性と堅牢性を促進します。
様々なセンサーやフィールドデバイスが中心的な役割を担い、製造に関する洞察を提供する大量のリアルタイムデータを生成する。
複雑なイベント処理(CEP)と機械学習(ML)のシナジーは、異種データストリームのパターンを特定し、生データを有形事実に融合するために、IIoTで近年積極的に開発されています。
本稿では,分散センサネットワークのエッジにおけるMLとCEPのシナジーを利用するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-04T14:58:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。