論文の概要: Continuous-Variable Quantum Encoding Techniques: A Comparative Study of Embedding Techniques and Their Impact on Machine Learning Performance
- arxiv url: http://arxiv.org/abs/2504.06497v1
- Date: Wed, 09 Apr 2025 00:00:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:07:25.406477
- Title: Continuous-Variable Quantum Encoding Techniques: A Comparative Study of Embedding Techniques and Their Impact on Machine Learning Performance
- Title(参考訳): 連続可変量子符号化技術:埋め込み技術の比較と機械学習性能への影響
- Authors: Minati Rath, Hema Date,
- Abstract要約: 連続変数量子コンピューティング(CVQC)と古典機械学習の交点について検討する。
CVQCに基づく符号化法は特徴表現性を著しく向上し,分類精度とF1スコアが向上した。
量子表現可能性と古典的学習可能性のトレードオフを考察し、これらの量子符号化を現実のアプリケーションに組み込むことの現実的な実現可能性に関する洞察を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study explores the intersection of continuous-variable quantum computing (CVQC) and classical machine learning, focusing on CVQC data encoding techniques, including Displacement encoding and squeezing encoding, alongside Instantaneous Quantum Polynomial (IQP) encoding from discrete quantum computing. We perform an extensive empirical analysis to assess the impact of these encoding methods on classical machine learning models, such as Logistic Regression, Support Vector Machines, K-Nearest Neighbors, and ensemble methods like Random Forest and LightGBM. Our findings indicate that CVQC-based encoding methods significantly enhance feature expressivity, resulting in improved classification accuracy and F1 scores, especially in high-dimensional and complex datasets. However, these improvements come with varying computational costs, which depend on the complexity of the encoding and the architecture of the machine learning models. Additionally, we examine the trade-off between quantum expressibility and classical learnability, offering valuable insights into the practical feasibility of incorporating these quantum encodings into real-world applications. This study contributes to the growing body of research on quantum-classical hybrid learning, emphasizing the role of CVQC in advancing quantum data representation and its integration into classical machine learning workflows.
- Abstract(参考訳): 本研究では,連続可変量子コンピューティング (CVQC) と古典的機械学習の交点を考察し,離散量子コンピューティングからのインスタント量子多項式 (IQP) と並行して,転位符号化やスクイーズ符号化を含むCVQCデータ符号化技術に着目した。
我々は、ロジスティック回帰、サポートベクトルマシン、K-Nearest Neighbors、およびランダムフォレストやLightGBMのようなアンサンブル手法といった古典的な機械学習モデルに対する、これらの符号化手法の影響を評価するための広範な実証分析を行う。
CVQCをベースとした符号化手法は特徴表現性を著しく向上させ,特に高次元・複雑なデータセットにおいて,分類精度とF1スコアが向上することが示唆された。
しかし、これらの改善には様々な計算コストが伴い、エンコーディングの複雑さと機械学習モデルのアーキテクチャに依存する。
さらに、量子表現可能性と古典的学習可能性のトレードオフについて検討し、これらの量子符号化を現実のアプリケーションに組み込むことの実用可能性に関する貴重な洞察を提供する。
本研究は,量子データ表現の進歩におけるCVQCの役割と,古典的な機械学習ワークフローへの統合に着目し,量子古典的ハイブリッド学習研究の進展に寄与する。
関連論文リスト
- Tensor-Based Binary Graph Encoding for Variational Quantum Classifiers [3.5051814539447474]
変分量子(VQC)を用いたグラフ分類のための新しい量子符号化フレームワークを提案する。
グラフ符号化に適したより複雑な回路を構築することにより、VQCが現在の量子ハードウェアの制約内でグラフを効果的に分類できることを実証する。
論文 参考訳(メタデータ) (2025-01-24T02:26:21Z) - Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Empirical Power of Quantum Encoding Methods for Binary Classification [0.2118773996967412]
我々は、様々な機械学習メトリクスに対する符号化スキームとその効果に焦点を当てる。
具体的には、実世界の複数のデータセットの量子符号化戦略の違いを示すために、実世界のデータ符号化に焦点を当てる。
論文 参考訳(メタデータ) (2024-08-23T14:34:57Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
論文 参考訳(メタデータ) (2024-05-18T14:35:57Z) - Quantum Data Encoding: A Comparative Analysis of Classical-to-Quantum
Mapping Techniques and Their Impact on Machine Learning Accuracy [0.0]
本研究では,古典的機械学習(ML)アルゴリズムへの量子データ埋め込み技術の統合について検討する。
その結果,量子データの埋め込みは,分類精度とF1スコアの向上に寄与することが判明した。
論文 参考訳(メタデータ) (2023-11-17T08:00:08Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
本研究は,変分量子回路に基づく垂直連合学習アーキテクチャを提案し,テキスト分類のための量子化事前学習BERTモデルの競争性能を実証する。
目的分類実験により,提案したBERT-QTCモデルにより,SnipsおよびATIS音声言語データセットの競合実験結果が得られた。
論文 参考訳(メタデータ) (2022-02-17T09:55:21Z) - Efficient Discrete Feature Encoding for Variational Quantum Classifier [3.7576442570677253]
変分量子分類(VQC)は、量子的に有利な方法の一つである。
本稿では,量子ランダムアクセス符号化(QRAC)を用いて,離散的特徴をVQCの量子ビット数に効率的にマッピングする手法を提案する。
QRACがVQCのトレーニングを高速化するためには,マッピングのキュービット数を節約することで,パラメータを削減できることを実験的に示す。
論文 参考訳(メタデータ) (2020-05-29T04:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。