論文の概要: 3-in-1: 2D Rotary Adaptation for Efficient Finetuning, Efficient Batching and Composability
- arxiv url: http://arxiv.org/abs/2409.00119v1
- Date: Wed, 28 Aug 2024 08:45:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 14:53:30.159416
- Title: 3-in-1: 2D Rotary Adaptation for Efficient Finetuning, Efficient Batching and Composability
- Title(参考訳): 3-in-1: 効率的なファインタニング, 効率的なバッチ, 構成性のための2次元ロータリー適応法
- Authors: Baohao Liao, Christof Monz,
- Abstract要約: 大規模言語モデル (LLM) に適応するために, 簡単な2次元回転を用いた新しい手法RoAdを導入する。
RoAdはパラメータ効率が非常に高く、8つの常識推論タスク、4つの算術推論タスクと0.1%のトレーニング可能なパラメータを提供する。
- 参考スコア(独自算出の注目度): 6.451743797015637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parameter-efficient finetuning (PEFT) methods effectively adapt large language models (LLMs) to diverse downstream tasks, reducing storage and GPU memory demands. Despite these advantages, several applications pose new challenges to PEFT beyond mere parameter efficiency. One notable challenge involves the efficient deployment of LLMs equipped with multiple task- or user-specific adapters, particularly when different adapters are needed for distinct requests within the same batch. Another challenge is the interpretability of LLMs, which is crucial for understanding how LLMs function. Previous studies introduced various approaches to address different challenges. In this paper, we introduce a novel method, RoAd, which employs a straightforward 2D rotation to adapt LLMs and addresses all the above challenges: (1) RoAd is remarkably parameter-efficient, delivering optimal performance on GLUE, eight commonsense reasoning tasks and four arithmetic reasoning tasks with $<0.1\%$ trainable parameters; (2) RoAd facilitates the efficient serving of requests requiring different adapters within a batch, with an overhead comparable to element-wise multiplication instead of batch matrix multiplication; (3) RoAd enhances LLM's interpretability through integration within a framework of distributed interchange intervention, demonstrated via composition experiments.
- Abstract(参考訳): パラメータ効率のよい微調整(PEFT)手法は、大規模言語モデル(LLM)を様々な下流タスクに効果的に適応させ、ストレージとGPUメモリの要求を減らす。
これらの利点にもかかわらず、いくつかのアプリケーションがPEFTに単なるパラメータ効率を超える新しい課題を提起している。
注目すべき課題のひとつは、複数のタスクまたはユーザ固有のアダプタを備えたLLMの効率的なデプロイである。
もう一つの課題は LLM の解釈可能性であり、LLM の機能の理解に不可欠である。
以前の研究では、様々な課題に対処する様々なアプローチが導入された。
本稿では,LLMを簡単な2次元回転で適用し,上記の課題に対処するRoAdという新しい手法を紹介する。(1)RoAdはパラメータ効率が極めて高く,GLUE上での最適性能を実現する8つのコモンセンス推論タスクと4つの算術推論タスクに<0.1\%$トレーニング可能なパラメータを付与する。(2)RoAdはバッチ内で異なるアダプタを必要とするリクエストの効率的な提供を容易にする。
関連論文リスト
- Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - CROME: Cross-Modal Adapters for Efficient Multimodal LLM [28.337072921099494]
MLLM(Multimodal Large Language Models)は、画像言語機能を示す。
既存のアプローチは、しばしば高価な言語モデルの再訓練と限定的な適応性を必要とする。
本稿では,効率的な視覚言語命令チューニングフレームワークCROMEを提案する。
論文 参考訳(メタデータ) (2024-08-13T03:45:11Z) - Prompt Recursive Search: A Living Framework with Adaptive Growth in LLM Auto-Prompting [22.025533583703126]
大規模言語モデル(LLM)のためのPRS(Prompt Recursive Search)フレームワークを提案する。
PRSフレームワークは、問題複雑性と調整可能な構造の評価を取り入れ、エラーの可能性の低減を確実にする。
The Chain of Thought(CoT)法と比較して, PRS法は, Llama3-7Bモデルを用いてBBHデータセットの精度を8%向上し, 22%の改善を実現した。
論文 参考訳(メタデータ) (2024-08-02T17:59:42Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
異なるプロンプトを異なるLarge Language Models (LLM) に適応させることで,NLP の様々な下流タスクにまたがる機能の向上が期待できる。
次に、下流タスクにおける各LLMに対して、元のプロンプトを最適化するモデル適応プロンプト(MAPO)手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:39:59Z) - ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization [13.622268474310918]
ShiftAddLLMは大規模言語モデルの効率的な乗算自由モデルである。
5.6および22.7ポイントのパープレキシティ改善を同等または低いレイテンシで達成する。
5つのLLMファミリーと8つのタスクの実験は、ShiftAddLLMの有効性を一貫して検証している。
論文 参考訳(メタデータ) (2024-06-10T02:47:55Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - CREMA: Generalizable and Efficient Video-Language Reasoning via Multimodal Modular Fusion [58.15403987979496]
CREMAは、ビデオ推論のための一般化可能、高効率、モジュラリティ融合フレームワークである。
本稿では,軽量核融合モジュールとモーダリティ・シークエンシャル・トレーニング・ストラテジーによって支援された,新しいプログレッシブ・マルチモーダル・フュージョン設計を提案する。
ビデオQA や Video-Audio/3D/Touch/Thermal QA を含む7つのビデオ言語推論タスクについて検証を行った。
論文 参考訳(メタデータ) (2024-02-08T18:27:22Z) - When MOE Meets LLMs: Parameter Efficient Fine-tuning for Multi-task Medical Applications [57.342772288710044]
我々はMOELoRAと呼ばれるマルチタスク医療応用のためのパラメータ効率の良い微調整フレームワークを提案する。
MOEとLoRAを統一するために、トレーニング可能なパラメータとして複数の専門家を考案し、トレーニング可能なパラメータの小さなサイズを保持するために、各専門家は2つの低ランク行列から構成される。
マルチタスク医療データセットを用いて実験を行い、MOELoRAが既存のパラメータを効率よく微調整する手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-21T17:18:09Z) - ScaLearn: Simple and Highly Parameter-Efficient Task Transfer by Learning to Scale [18.396897413970965]
ScaLearnは単純かつパラメータ効率の高い2段階MTL法である。
我々はScaLearnが少数の転送パラメータを持つ強いベースラインを一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2023-10-02T14:01:36Z) - LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of
Large Language Models [75.25782573728677]
本稿では,言語モデル(LLM)のPEFT(Adapter-based parameter- efficient fine-tuning)のためのフレームワークを提案する。
このフレームワークには、LLaMA、BLOOM、GPT-Jといった最先端のオープンアクセスLLMや、シリーズアダプタ、パラレルアダプタ、Promptベースの学習、Reparametrizationベースのメソッドなどの広く使われているアダプタが含まれている。
本研究では,2つの異なる推論タスク,算術的推論と常識推論の14種類のデータセットに対するアダプタの有効性を評価する。
論文 参考訳(メタデータ) (2023-04-04T16:31:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。