論文の概要: MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale
- arxiv url: http://arxiv.org/abs/2409.00134v4
- Date: Tue, 11 Feb 2025 12:28:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:04:15.986174
- Title: MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale
- Title(参考訳): MAPF-GPT:マルチエージェントパスフィニングにおけるシミュレーション学習
- Authors: Anton Andreychuk, Konstantin Yakovlev, Aleksandr Panov, Alexey Skrynnik,
- Abstract要約: MAPF(Multi-agent pathfinding)は、一般に、共有環境において複数のエージェントに対して衝突のない経路を見つけることを必要とする問題である。
近年、MAPFへの学習に基づくアプローチが注目されており、特に深層強化学習を活用している。
MAPF-GPTは,多種多様な問題インスタンスにおいて,現在最も優れた学習可能なMAPFソルバよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 46.35418789518417
- License:
- Abstract: Multi-agent pathfinding (MAPF) is a problem that generally requires finding collision-free paths for multiple agents in a shared environment. Solving MAPF optimally, even under restrictive assumptions, is NP-hard, yet efficient solutions for this problem are critical for numerous applications, such as automated warehouses and transportation systems. Recently, learning-based approaches to MAPF have gained attention, particularly those leveraging deep reinforcement learning. Typically, such learning-based MAPF solvers are augmented with additional components like single-agent planning or communication. Orthogonally, in this work we rely solely on imitation learning that leverages a large dataset of expert MAPF solutions and transformer-based neural network to create a foundation model for MAPF called MAPF-GPT. The latter is capable of generating actions without additional heuristics or communication. MAPF-GPT demonstrates zero-shot learning abilities when solving the MAPF problems that are not present in the training dataset. We show that MAPF-GPT notably outperforms the current best-performing learnable MAPF solvers on a diverse range of problem instances and is computationally efficient during inference.
- Abstract(参考訳): MAPF(Multi-agent pathfinding)は、一般に、共有環境において複数のエージェントに対して衝突のない経路を見つけることを必要とする問題である。
MAPFの最適解法は、制限的な仮定の下でもNPハードであり、この問題の効率的な解法は、自動倉庫や輸送システムなど、多くのアプリケーションにとって重要である。
近年、MAPFへの学習に基づくアプローチが注目されており、特に深層強化学習を活用している。
通常、このような学習ベースのMAPFソルバは、単一エージェントの計画やコミュニケーションのような追加のコンポーネントで拡張される。
直交的には、私たちはMAPF-GPTと呼ばれるMAPFの基礎モデルを作成するために、専門家MAPFソリューションとトランスフォーマーベースのニューラルネットワークの大規模なデータセットを活用する模倣学習にのみ依存しています。
後者は、追加のヒューリスティックやコミュニケーションなしでアクションを生成することができる。
MAPF-GPTは、トレーニングデータセットに存在しないMAPF問題を解決する際に、ゼロショット学習能力を示す。
MAPF-GPTは、様々な問題インスタンスにおいて学習可能なMAPFソルバよりも優れており、推論時に計算効率が高いことを示す。
関連論文リスト
- Transient Multi-Agent Path Finding for Lifelong Navigation in Dense Environments [9.000023855628958]
ライフロングMAPF(英: Lifelong MAPF、LMAPF)は、エージェントが現在のターゲットに到達すると新たなターゲットを受信するMAPFのオンライン版である。
そこで本研究では,LMAPF問題に対して,各エージェントが最終的にターゲットを訪問することを目的とした修正MAPF問題の系列を解くことで,LMAPF問題を解くことを提案する。
本稿では、このMAPF変種をTransient MAPF (TMAPF) と呼び、既存のMAPFアルゴリズムに基づいたいくつかのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-05T15:37:29Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
MAPF (Multi-Agent Path Finding) は、複数のエージェントが同時に移動し、与えられた目標地点に向かって共有領域を通って衝突しない経路を決定する。
最適解を見つけることは、しばしば計算不可能であり、近似的な準最適アルゴリズムを用いることが不可欠である。
本稿では、MAPFのスケーラブルな機構設計の問題を紹介し、MAPFアルゴリズムを近似した3つの戦略防御機構を提案する。
論文 参考訳(メタデータ) (2024-01-30T14:26:04Z) - Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
マルチエージェントパスフィンディング問題は、グラフに閉じ込められたエージェントのグループに対するコンフリクトフリーパスのセットを見つけることである。
本研究では、エージェントが他のエージェントをローカルにのみ観察できる分散MAPF設定に焦点を当てた。
MAPFタスクのための分散マルチエージェントモンテカルロ木探索法を提案する。
論文 参考訳(メタデータ) (2023-12-26T06:57:22Z) - Traffic Flow Optimisation for Lifelong Multi-Agent Path Finding [29.76466191644455]
MAPF(Multi-Agent Path Finding)は、ロボット工学における基本的な問題であり、エージェントのチームに対して衝突のない経路の計算を求める。
本稿では,MAPFにエージェントを誘導する手法を提案する。
各エージェントが1つの宛先を持つワンショットMAPFと、エージェントが常に新しい宛先を割り当てる終身MAPFの2つの大規模設定でこのアイデアを評価する。
論文 参考訳(メタデータ) (2023-08-22T07:17:39Z) - Conflict-Based Search for Explainable Multi-Agent Path Finding [7.734726150561088]
安全クリティカルなアプリケーションでは、人間の監督者は、この計画が本当に衝突のないものであることを検証したいかもしれない。
MAPF問題は、簡潔な説明を認める非衝突経路のセットを要求する。
従来のMAPFアルゴリズムは、説明可能なMAPFを直接処理するものではない。
我々は、MAPFのためのよく研究されたアルゴリズムである Conflict Based Search (CBS) を適用して、説明可能なMAPFを扱う。
論文 参考訳(メタデータ) (2022-02-20T23:13:14Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
モデルに依存しないメタラーニング (MAML) が人気のある研究分野となっている。
既存のMAMLアルゴリズムは、イテレーション毎にメタモデルを更新するためにいくつかのタスクとデータポイントをサンプリングすることで、エピソードのアイデアに依存している。
本稿では,MAMLのメモリベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-09T08:47:58Z) - MALib: A Parallel Framework for Population-based Multi-agent
Reinforcement Learning [61.28547338576706]
人口ベースマルチエージェント強化学習(PB-MARL)は、強化学習(RL)アルゴリズムでネストした一連の手法を指す。
PB-MARLのためのスケーラブルで効率的な計算フレームワークMALibを提案する。
論文 参考訳(メタデータ) (2021-06-05T03:27:08Z) - Compilation-based Solvers for Multi-Agent Path Finding: a Survey,
Discussion, and Future Opportunities [7.766921168069532]
このトピックの過去の発展と現在の傾向から学んだ教訓を示し、その広範な影響について議論します。
最適MAPF解決のための2つの主要なアプローチは、(1)MAPFを直接解決する専用の検索ベース手法、(2)MAPFインスタンスを異なる確立された形式でインスタンスに還元するコンパイルベース手法である。
論文 参考訳(メタデータ) (2021-04-23T20:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。