A Generative Adversarial Network-based Method for LiDAR-Assisted Radar Image Enhancement
- URL: http://arxiv.org/abs/2409.00196v1
- Date: Fri, 30 Aug 2024 18:22:39 GMT
- Title: A Generative Adversarial Network-based Method for LiDAR-Assisted Radar Image Enhancement
- Authors: Thakshila Thilakanayake, Oscar De Silva, Thumeera R. Wanasinghe, George K. Mann, Awantha Jayasiri,
- Abstract summary: This paper presents a generative adversarial network (GAN) based approach for radar image enhancement.
The proposed method utilizes high-resolution, two-dimensional (2D) projected light detection and ranging (LiDAR) point clouds as ground truth images.
The effectiveness of the proposed method is demonstrated through both qualitative and quantitative results.
- Score: 0.8528401618469594
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a generative adversarial network (GAN) based approach for radar image enhancement. Although radar sensors remain robust for operations under adverse weather conditions, their application in autonomous vehicles (AVs) is commonly limited by the low-resolution data they produce. The primary goal of this study is to enhance the radar images to better depict the details and features of the environment, thereby facilitating more accurate object identification in AVs. The proposed method utilizes high-resolution, two-dimensional (2D) projected light detection and ranging (LiDAR) point clouds as ground truth images and low-resolution radar images as inputs to train the GAN. The ground truth images were obtained through two main steps. First, a LiDAR point cloud map was generated by accumulating raw LiDAR scans. Then, a customized LiDAR point cloud cropping and projection method was employed to obtain 2D projected LiDAR point clouds. The inference process of the proposed method relies solely on radar images to generate an enhanced version of them. The effectiveness of the proposed method is demonstrated through both qualitative and quantitative results. These results show that the proposed method can generate enhanced images with clearer object representation compared to the input radar images, even under adverse weather conditions.
Related papers
- LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDAR simulation plays a crucial role in closed-loop simulation for autonomous driving.
We present LiDAR-GS, the first LiDAR Gaussian Splatting method, for real-time high-fidelity re-simulation of LiDAR sensor scans in public urban road scenes.
Our approach succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - Redefining Automotive Radar Imaging: A Domain-Informed 1D Deep Learning Approach for High-Resolution and Efficient Performance [6.784861785632841]
Our study redefines radar imaging super-resolution as a one-dimensional (1D) signal super-resolution spectra estimation problem.
Our tailored deep learning network for automotive radar imaging exhibits remarkable scalability, parameter efficiency and fast inference speed.
Our SR-SPECNet sets a new benchmark in producing high-resolution radar range-azimuth images.
arXiv Detail & Related papers (2024-06-11T16:07:08Z) - Diffusion-Based Point Cloud Super-Resolution for mmWave Radar Data [8.552647576661174]
millimeter-wave radar sensor maintains stable performance under adverse environmental conditions.
Radar point clouds are relatively sparse and contain massive ghost points.
We propose a novel point cloud super-resolution approach for 3D mmWave radar data, named Radar-diffusion.
arXiv Detail & Related papers (2024-04-09T04:41:05Z) - Towards Dense and Accurate Radar Perception Via Efficient Cross-Modal Diffusion Model [4.269423698485249]
This paper proposes a novel approach to dense and accurate mmWave radar point cloud construction via cross-modal learning.
Specifically, we introduce diffusion models, which possess state-of-the-art performance in generative modeling, to predict LiDAR-like point clouds from paired raw radar data.
We validate the proposed method through extensive benchmark comparisons and real-world experiments, demonstrating its superior performance and generalization ability.
arXiv Detail & Related papers (2024-03-13T12:20:20Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
Radar-centric data sets do not get a lot of attention in the development of deep learning techniques for radar perception.
We propose a transformers-based model, named RadarFormer, that utilizes state-of-the-art developments in vision deep learning.
Our model also introduces a channel-chirp-time merging module that reduces the size and complexity of our models by more than 10 times without compromising accuracy.
arXiv Detail & Related papers (2023-04-17T17:07:35Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network.
We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods.
The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions.
arXiv Detail & Related papers (2020-09-30T19:01:33Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.