論文の概要: MedDet: Generative Adversarial Distillation for Efficient Cervical Disc Herniation Detection
- arxiv url: http://arxiv.org/abs/2409.00204v1
- Date: Fri, 30 Aug 2024 18:38:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 16:37:47.863844
- Title: MedDet: Generative Adversarial Distillation for Efficient Cervical Disc Herniation Detection
- Title(参考訳): MedDet:効率的な頚椎椎間板ヘルニア検出のための生成的対側蒸留法
- Authors: Zeyu Zhang, Nengmin Yi, Shengbo Tan, Ying Cai, Yi Yang, Lei Xu, Qingtai Li, Zhang Yi, Daji Ergu, Yang Zhao,
- Abstract要約: 頚椎椎間板ヘルニア(Cervical disc herniation, CDH)は、筋骨格障害の一種で、専門医による労働集約的な分析を必要とする。
医用画像の自動検出の進歩にもかかわらず、これらの手法のリアルタイム適用を妨げる2つの重要な課題がある。
MedDetは,モデル圧縮と効率向上のために,マルチ教師の単一学習知識蒸留を利用する。
最後に,CDH-1848データセットの総合的な実験を行い,従来の手法と比較して最大5%のmAP改善を実現した。
- 参考スコア(独自算出の注目度): 24.833129797776422
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cervical disc herniation (CDH) is a prevalent musculoskeletal disorder that significantly impacts health and requires labor-intensive analysis from experts. Despite advancements in automated detection of medical imaging, two significant challenges hinder the real-world application of these methods. First, the computational complexity and resource demands present a significant gap for real-time application. Second, noise in MRI reduces the effectiveness of existing methods by distorting feature extraction. To address these challenges, we propose three key contributions: Firstly, we introduced MedDet, which leverages the multi-teacher single-student knowledge distillation for model compression and efficiency, meanwhile integrating generative adversarial training to enhance performance. Additionally, we customize the second-order nmODE to improve the model's resistance to noise in MRI. Lastly, we conducted comprehensive experiments on the CDH-1848 dataset, achieving up to a 5% improvement in mAP compared to previous methods. Our approach also delivers over 5 times faster inference speed, with approximately 67.8% reduction in parameters and 36.9% reduction in FLOPs compared to the teacher model. These advancements significantly enhance the performance and efficiency of automated CDH detection, demonstrating promising potential for future application in clinical practice. See project website https://steve-zeyu-zhang.github.io/MedDet
- Abstract(参考訳): 頚椎椎間板ヘルニア(Cervical disc herniation, CDH)は、筋骨格障害の1つである。
医用画像の自動検出の進歩にもかかわらず、これらの手法の現実的な応用を妨げる2つの大きな課題がある。
第一に、計算の複雑さとリソース要求は、リアルタイムアプリケーションにとって大きなギャップを生じさせる。
第二に、MRIのノイズは特徴抽出を歪ませることで既存の手法の有効性を低下させる。
まず, モデル圧縮と効率向上のために, マルチ教師による単一学習知識の蒸留を活用するMedDetを導入した。
さらに、MRIのノイズ耐性を改善するために、2階のnmODEをカスタマイズする。
最後に,CDH-1848データセットの総合的な実験を行い,従来の手法と比較して最大5%のmAP改善を実現した。
提案手法は,約67.8%のパラメータを,36.9%のFLOPを教師モデルと比較し,推論速度を5倍以上に向上させる。
これらの進歩はCDH自動検出の性能と効率を大幅に向上させ、将来的な臨床応用の可能性を示している。
プロジェクトのWebサイト https://steve-zeyu-zhang.github.io/MedDet
関連論文リスト
- CONSULT: Contrastive Self-Supervised Learning for Few-shot Tumor Detection [21.809270017579806]
CONSULT(Contrastive Self-SUpervised Learning for few-shot tumor detection)と呼ばれる新しい2段階異常検出アルゴリズムを提案する。
CONSULTは、MRI脳画像に特化して訓練済みの機能抽出器を微調整し、合成データ生成パイプラインを使用して腫瘍のようなデータを生成する。
第1段階は、文脈対応コントラスト学習と自己監督型特徴逆学習を取り入れた高変量データの特徴抽出において、現在の異常検出の欠点を克服することである。
論文 参考訳(メタデータ) (2024-10-15T06:09:28Z) - A Machine Learning Approach for Identifying Anatomical Biomarkers of Early Mild Cognitive Impairment [2.9027661868249255]
アルツハイマー病は重要な課題であり、効果的な介入のために早期発見が必要である。
本研究では、MRIに基づくバイオマーカーの選択と分類のための機械学習手法を解析し、5年以内に健康的なコントロールと軽度の認知障害を区別する。
論文 参考訳(メタデータ) (2024-05-29T06:12:05Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
AIによる薬物発見の大きな課題は、高品質なデータの不足である。
薬物動態の4つの重要なパラメータを同時に予測するPEMAL法を開発した。
実験の結果,PEMALは一般的なグラフニューラルネットワークに比べてデータ需要を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-04-16T07:42:55Z) - A Learnable Prior Improves Inverse Tumor Growth Modeling [8.87818392404259]
両アプローチの独特な長所を相乗的に活用する新しい枠組みを提案する。
磁気共鳴画像から脳腫瘍細胞濃度を推定するための高速深層学習アルゴリズムと高精度進化戦略を統合することの有効性を示す。
論文 参考訳(メタデータ) (2024-03-07T13:59:34Z) - Identifying Alzheimer Disease Dementia Levels Using Machine Learning
Methods [0.0]
RF, SVM, CNNアルゴリズムを用いて認知症の4段階を分類する手法を提案する。
以上の結果から,浸水特性を持つSVMの精度は96.25%であり,他の分類法よりも高いことがわかった。
論文 参考訳(メタデータ) (2023-11-02T17:44:28Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - An Evaluation of Lightweight Deep Learning Techniques in Medical Imaging
for High Precision COVID-19 Diagnostics [0.0]
決定支援システムは、画像の物理的検査に固有の課題を緩和する。
ほとんどのディープラーニングアルゴリズムは、リソース制約のあるデバイスの実装には適していない。
本稿では,MobileNetV2モデルを用いた新型コロナウイルス検出のための軽量深層学習手法の開発と評価について述べる。
論文 参考訳(メタデータ) (2023-05-30T13:14:03Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
皮膚がんは最も一般的な悪性腫瘍の1つであり、人口に影響を与え、世界中で経済的な重荷を負っている。
皮膚がん検出のほとんどの研究は、ポータブルデバイス上での計算資源の制限を考慮せずに、高い予測精度を追求している。
本研究は,皮膚疾患分類のための汎用的なKDフレームワークに多様な知識を統一する,SSD-KDと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T06:54:29Z) - Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies
on Medical Image Classification [63.44396343014749]
AUCスコアに対する新たなマージンベースサロゲート損失関数を提案する。
一般的に使用されるものよりも頑丈である。
大規模な最適化の観点からも同じ利点を享受しながら、正方損失。
私たちの知る限りでは、DAMが大規模医療画像データセットで成功するのはこれが初めてです。
論文 参考訳(メタデータ) (2020-12-06T03:41:51Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
本研究では,心臓の運動推定を高精度かつ効率的に行うための,ディープラーニングに基づく新しいアプローチであるMotion Pyramid Networksを提案する。
我々は、複数の特徴表現から運動場のピラミッドを予測し、融合し、より洗練された運動場を生成する。
そこで我々は,新しい循環型教員教育戦略を用いて,推論をエンドツーエンドにし,トラッキング性能をさらに向上させる。
論文 参考訳(メタデータ) (2020-06-28T21:03:19Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。