論文の概要: GSpect: Spectral Filtering for Cross-Scale Graph Classification
- arxiv url: http://arxiv.org/abs/2409.00338v1
- Date: Sat, 31 Aug 2024 03:26:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 15:37:00.739055
- Title: GSpect: Spectral Filtering for Cross-Scale Graph Classification
- Title(参考訳): GSpect: 大規模グラフ分類のためのスペクトルフィルタリング
- Authors: Xiaoyu Zhang, Wenchuan Yang, Jiawei Feng, Bitao Dai, Tianci Bu, Xin Lu,
- Abstract要約: クロススケールグラフ分類タスクのための高度なスペクトルグラフフィルタリングモデルであるGSpectを提案する。
オープンデータセットでは、GSpectは分類精度を平均1.62%改善し、ProteINSでは最大3.33%向上した。
GSpectは、クロススケールグラフ分類研究のギャップを埋め、脳疾患の診断のような応用研究を支援する可能性がある。
- 参考スコア(独自算出の注目度): 9.800723513820046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying structures in common forms the basis for networked systems design and optimization. However, real structures represented by graphs are often of varying sizes, leading to the low accuracy of traditional graph classification methods. These graphs are called cross-scale graphs. To overcome this limitation, in this study, we propose GSpect, an advanced spectral graph filtering model for cross-scale graph classification tasks. Compared with other methods, we use graph wavelet neural networks for the convolution layer of the model, which aggregates multi-scale messages to generate graph representations. We design a spectral-pooling layer which aggregates nodes to one node to reduce the cross-scale graphs to the same size. We collect and construct the cross-scale benchmark data set, MSG (Multi Scale Graphs). Experiments reveal that, on open data sets, GSpect improves the performance of classification accuracy by 1.62% on average, and for a maximum of 3.33% on PROTEINS. On MSG, GSpect improves the performance of classification accuracy by 15.55% on average. GSpect fills the gap in cross-scale graph classification studies and has potential to provide assistance in application research like diagnosis of brain disease by predicting the brain network's label and developing new drugs with molecular structures learned from their counterparts in other systems.
- Abstract(参考訳): 共通構造を同定することは、ネットワーク化されたシステムの設計と最適化の基礎となる。
しかし、グラフで表される実際の構造は、しばしば異なる大きさであり、従来のグラフ分類法の精度は低い。
これらのグラフはクロススケールグラフと呼ばれる。
本稿では,この制限を克服するために,クロススケールグラフ分類タスクのための高度なスペクトルグラフフィルタリングモデルであるGSpectを提案する。
他の手法と比較して、モデルの畳み込み層にグラフウェーブレットニューラルネットワークを使用し、マルチスケールメッセージを集約してグラフ表現を生成する。
我々は,ノードをひとつのノードに集約して,クロススケールグラフを同じサイズに縮小するスペクトルプーリング層を設計する。
クロススケールベンチマークデータセットMSG(Multi Scale Graphs)を収集・構築する。
実験によると、オープンデータセットでは、GSpectは平均で1.62%、最大で3.33%の分類精度を向上させる。
MSGでは、GSpectは分類精度を平均15.55%向上させる。
GSpectは、クロススケールグラフ分類研究のギャップを埋め、脳ネットワークのラベルを予測し、他のシステムで学習した分子構造を持つ新しい薬物を開発することで、脳疾患の診断のような応用研究を支援する可能性がある。
関連論文リスト
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Graph Classification Gaussian Processes via Spectral Features [7.474662887810221]
グラフ分類は、その構造とノード属性に基づいてグラフを分類することを目的としている。
本研究では,スペクトル特徴を導出するグラフ信号処理ツールを用いて,この課題に取り組むことを提案する。
このような単純なアプローチであっても、学習されたパラメータがなくても、強力なニューラルネットワークやグラフカーネルのベースラインと比較して、競争力のあるパフォーマンスが得られることを示す。
論文 参考訳(メタデータ) (2023-06-06T15:31:05Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
本稿では,グラフコントラスト適応ズームによる自己教師付きグラフ表現学習アルゴリズムを提案する。
このメカニズムにより、G-Zoomはグラフから複数のスケールから自己超越信号を探索して抽出することができる。
我々は,実世界のデータセットに関する広範な実験を行い,提案したモデルが常に最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-11-20T22:45:53Z) - Pointspectrum: Equivariance Meets Laplacian Filtering for Graph
Representation Learning [3.7875603451557063]
グラフ表現学習(GRL)は、現代のグラフデータマイニングおよび学習タスクに欠かせないものとなっている。
グラフニューラルネットワーク(GNN)は最先端のGRLアーキテクチャで使用されているが、過度なスムース化に悩まされていることが示されている。
本稿では,グラフの構造を考慮に入れたスペクトル法であるPointSpectrumを提案する。
論文 参考訳(メタデータ) (2021-09-06T10:59:11Z) - Graph Networks with Spectral Message Passing [1.0742675209112622]
本稿では,空間領域とスペクトル領域の両方にメッセージパッシングを適用するSpectral Graph Networkを紹介する。
その結果,spectrum gnは効率のよいトレーニングを促進し,より多くのパラメータを持つにもかかわらず,少ないトレーニングイテレーションで高いパフォーマンスを達成できることがわかった。
論文 参考訳(メタデータ) (2020-12-31T21:33:17Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Pseudoinverse Graph Convolutional Networks: Fast Filters Tailored for
Large Eigengaps of Dense Graphs and Hypergraphs [0.0]
Graph Convolutional Networks (GCNs) は、グラフベースのデータセットで半教師付き分類を行うツールとして成功している。
本稿では,三部フィルタ空間が高密度グラフを対象とする新しいGCN変種を提案する。
論文 参考訳(メタデータ) (2020-08-03T08:48:41Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
グラフ識別(GI)は、グラフ学習において長い間研究されており、特定の応用において不可欠である。
本稿では,逆グラフ識別(Inverse Graph Identification, IGI)と呼ばれる新しい問題を定義する。
本稿では,グラフアテンションネットワーク(GAT)を用いたノードレベルのメッセージパッシング処理を,GIのプロトコルの下でシンプルかつ効果的に行う方法を提案する。
論文 参考訳(メタデータ) (2020-07-12T12:06:17Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。