An Empirical Study on Information Extraction using Large Language Models
- URL: http://arxiv.org/abs/2409.00369v3
- Date: Mon, 9 Sep 2024 13:50:30 GMT
- Title: An Empirical Study on Information Extraction using Large Language Models
- Authors: Ridong Han, Chaohao Yang, Tao Peng, Prayag Tiwari, Xiang Wan, Lu Liu, Benyou Wang,
- Abstract summary: Human-like large language models (LLMs) have proven to be very helpful for many natural language processing (NLP) related tasks.
We propose and analyze the effects of a series of simple prompt-based methods on GPT-4's information extraction ability.
- Score: 36.090082785047855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human-like large language models (LLMs), especially the most powerful and popular ones in OpenAI's GPT family, have proven to be very helpful for many natural language processing (NLP) related tasks. Therefore, various attempts have been made to apply LLMs to information extraction (IE), which is a fundamental NLP task that involves extracting information from unstructured plain text. To demonstrate the latest representative progress in LLMs' information extraction ability, we assess the information extraction ability of GPT-4 (the latest version of GPT at the time of writing this paper) from four perspectives: Performance, Evaluation Criteria, Robustness, and Error Types. Our results suggest a visible performance gap between GPT-4 and state-of-the-art (SOTA) IE methods. To alleviate this problem, considering the LLMs' human-like characteristics, we propose and analyze the effects of a series of simple prompt-based methods, which can be generalized to other LLMs and NLP tasks. Rich experiments show our methods' effectiveness and some of their remaining issues in improving GPT-4's information extraction ability.
Related papers
- A Universal Prompting Strategy for Extracting Process Model Information from Natural Language Text using Large Language Models [0.8899670429041453]
We show that generative large language models (LLMs) can solve NLP tasks with very high quality without the need for extensive data.
Based on a novel prompting strategy, we show that LLMs are able to outperform state-of-the-art machine learning approaches.
arXiv Detail & Related papers (2024-07-26T06:39:35Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICL is a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations.
Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods.
arXiv Detail & Related papers (2024-02-17T11:28:08Z) - Mastering the Task of Open Information Extraction with Large Language
Models and Consistent Reasoning Environment [52.592199835286394]
Open Information Extraction (OIE) aims to extract objective structured knowledge from natural texts.
Large language models (LLMs) have exhibited remarkable in-context learning capabilities.
arXiv Detail & Related papers (2023-10-16T17:11:42Z) - Large Language Models as Data Preprocessors [9.99065004972981]
Large Language Models (LLMs) have marked a significant advancement in artificial intelligence.
This study explores their potential in data preprocessing, a critical stage in data mining and analytics applications.
We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques.
arXiv Detail & Related papers (2023-08-30T23:28:43Z) - Metacognitive Prompting Improves Understanding in Large Language Models [12.112914393948415]
We introduce Metacognitive Prompting (MP), a strategy inspired by human introspective reasoning processes.
We conduct experiments on four prevalent Large Language Models (LLMs) across ten natural language understanding (NLU) datasets.
MP consistently outperforms existing prompting methods in both general and domain-specific NLU tasks.
arXiv Detail & Related papers (2023-08-10T05:10:17Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z) - An Empirical Study on Information Extraction using Large Language Models [36.090082785047855]
Human-like large language models (LLMs) have proven to be very helpful for many natural language processing (NLP) related tasks.
We propose and analyze the effects of a series of simple prompt-based methods on GPT-4's information extraction ability.
arXiv Detail & Related papers (2023-05-23T18:17:43Z) - LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities [66.36633042421387]
Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning evaluated.
We propose AutoKG, a multi-agent-based approach employing LLMs and external sources for KG construction and reasoning.
arXiv Detail & Related papers (2023-05-22T15:56:44Z) - A systematic evaluation of large language models for biomedical natural language processing: benchmarks, baselines, and recommendations [22.668383945059762]
We present a systematic evaluation of four representative Large Language Models (LLMs) across 12 BioNLP datasets.
The evaluation is conducted under four settings: zero-shot, static few-shot, dynamic K-nearest few-shot, and fine-tuning.
We compare these models against state-of-the-art (SOTA) approaches that fine-tune (domain-specific) BERT or BART models.
arXiv Detail & Related papers (2023-05-10T13:40:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.