High Precision Fault-Tolerant Quantum Circuit Synthesis by Diagonalization using Reinforcement Learning
- URL: http://arxiv.org/abs/2409.00433v3
- Date: Tue, 22 Oct 2024 03:32:31 GMT
- Title: High Precision Fault-Tolerant Quantum Circuit Synthesis by Diagonalization using Reinforcement Learning
- Authors: Mathias Weiden, Justin Kalloor, Ed Younis, John Kubiatowicz, Costin Iancu,
- Abstract summary: Empirical search-based synthesis methods can generate good implementations for a more extensive set of unitaries.
We leverage search-based methods to reduce the general unitary synthesis problem to one of diagonal unitaries.
On a subset of algorithms of interest for future term applications, diagonalization can reduce T gate counts by up to 16.8%.
- Score: 0.8341988468339112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Resource efficient and high precision compilation of programs into quantum circuits expressed in Fault-Tolerant gate sets, such as the Clifford+T gate set, is vital for the success of quantum computing. Optimal analytical compilation methods are known for restricted classes of unitaries, otherwise the problem is intractable. Empirical search-based synthesis methods, including Reinforcement Learning and simulated annealing, can generate good implementations for a more extensive set of unitaries, but require trade-offs in approximation precision and resource use. We leverage search-based methods to reduce the general unitary synthesis problem to one of synthesizing diagonal unitaries; a problem solvable efficiently in general and optimally in the single-qubit case. We demonstrate how our approach improves the implementation precision attainable by Fault-Tolerant synthesis algorithms on an array of unitaries taken from real quantum algorithms. On these benchmarks, many of which cannot be handled by existing approaches, we observe an average of 95% fewer resource-intensive non-Clifford gates compared to the more general Quantum Shannon Decomposition. On a subset of algorithms of interest for future term applications, diagonalization can reduce T gate counts by up to 16.8% compared to other methods.
Related papers
- Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
We develop AlphaTensor-Quantum, a method to minimize the number of T gates that are needed to implement a given circuit.
Unlike existing methods for T-count optimization, AlphaTensor-Quantum can incorporate domain-specific knowledge about quantum computation and leverage gadgets.
Remarkably, it discovers an efficient algorithm akin to Karatsuba's method for multiplication in finite fields.
arXiv Detail & Related papers (2024-02-22T09:20:54Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Improving Quantum Circuit Synthesis with Machine Learning [0.7894596908025954]
We show how applying machine learning to unitary datasets permits drastic speedups for synthesis algorithms.
This paper presents QSeed, a seeded synthesis algorithm that employs a learned model to quickly propose resource efficient circuit implementations of unitaries.
arXiv Detail & Related papers (2023-06-09T01:53:56Z) - Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy [1.14219428942199]
We propose an Ising formulation of integer optimization problems to utilize quantum annealing in the iterative improvement strategy.
We analytically show that a first-order phase transition is successfully avoided for a fully connected ferro Potts model if the overlap between a ground state and a candidate solution exceeds a threshold.
arXiv Detail & Related papers (2022-11-08T02:12:49Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
We argue that noise makes evaluations of the objective function via quantum circuits biased.
We derive the missing guarantees and find that the rate of convergence is unaffected.
arXiv Detail & Related papers (2022-09-21T19:18:41Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Gaussian Elimination versus Greedy Methods for the Synthesis of Linear
Reversible Circuits [0.0]
reversible circuits represent a subclass of reversible circuits with many applications in quantum computing.
We propose a new algorithm for any linear reversible operator by using an optimized version of the Gaussian elimination algorithm and a tuned LU factorization.
Overall, our algorithms improve the state-of-the-art methods for specific ranges of problem sizes.
arXiv Detail & Related papers (2022-01-17T16:31:42Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.