High-Precision Multi-Qubit Clifford+T Synthesis by Unitary Diagonalization
- URL: http://arxiv.org/abs/2409.00433v4
- Date: Tue, 18 Mar 2025 20:35:25 GMT
- Title: High-Precision Multi-Qubit Clifford+T Synthesis by Unitary Diagonalization
- Authors: Mathias Weiden, Justin Kalloor, Ed Younis, John Kubiatowicz, Costin Iancu,
- Abstract summary: Resource-efficient and high-precision approximate synthesis of quantum circuits expressed in the Clifford+T gate set is vital for Fault-Tolerant quantum computing.<n>We leverage search-based methods to first approximately diagonalize a unitary, then perform the inversion analytically.<n>Our approach improves both the implementation precision and run time of synthesis algorithms by orders of magnitude when evaluated on unitaries from real quantum algorithms.
- Score: 0.8341988468339112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Resource-efficient and high-precision approximate synthesis of quantum circuits expressed in the Clifford+T gate set is vital for Fault-Tolerant quantum computing. Efficient optimal methods are known for single-qubit $R_Z$ unitaries, otherwise the problem is generally intractable. Search-based methods, like simulated annealing, empirically generate low resource cost approximate implementations of general multi-qubit unitaries so long as low precision (Hilbert-Schmidt distances of $\epsilon \geq 10^{-2}$) can be tolerated. These algorithms build up circuits that directly invert target unitaries. We instead leverage search-based methods to first approximately diagonalize a unitary, then perform the inversion analytically. This lets difficult continuous rotations be bypassed and handled in a post-processing step. Our approach improves both the implementation precision and run time of synthesis algorithms by orders of magnitude when evaluated on unitaries from real quantum algorithms. On benchmarks previously synthesizable only with analytical techniques like the Quantum Shannon Decomposition, diagonalization uses an average of 95% fewer non-Clifford gates.
Related papers
- Solving quadratic binary optimization problems using quantum SDP methods: Non-asymptotic running time analysis [1.9081120388919084]
Quantum computers can solve semidefinite programs (SDPs) using resources that scale better than state-of-the-art classical methods.
We present an analysis of the non-asymptotic resource requirements of a quantum SDP solver.
arXiv Detail & Related papers (2025-02-21T12:54:05Z) - A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
We develop AlphaTensor-Quantum, a method to minimize the number of T gates that are needed to implement a given circuit.
Unlike existing methods for T-count optimization, AlphaTensor-Quantum can incorporate domain-specific knowledge about quantum computation and leverage gadgets.
Remarkably, it discovers an efficient algorithm akin to Karatsuba's method for multiplication in finite fields.
arXiv Detail & Related papers (2024-02-22T09:20:54Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Improving Quantum Circuit Synthesis with Machine Learning [0.7894596908025954]
We show how applying machine learning to unitary datasets permits drastic speedups for synthesis algorithms.
This paper presents QSeed, a seeded synthesis algorithm that employs a learned model to quickly propose resource efficient circuit implementations of unitaries.
arXiv Detail & Related papers (2023-06-09T01:53:56Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Automatic Depth-Optimized Quantum Circuit Synthesis for Diagonal Unitary
Matrices with Asymptotically Optimal Gate Count [9.194399933498323]
It is of great importance to optimize the depth/gate-count when designing quantum circuits for specific tasks.
In this paper, we propose a depth-optimized synthesis algorithm that automatically produces a quantum circuit for any given diagonal unitary matrix.
arXiv Detail & Related papers (2022-12-02T06:58:26Z) - Even shorter quantum circuit for phase estimation on early
fault-tolerant quantum computers with applications to ground-state energy
estimation [5.746732081406236]
We develop a phase estimation method with a distinct feature.
The total cost of the algorithm satisfies the Heisenberg-limited scaling $widetildemathcalO(epsilon-1)$.
Our algorithm may significantly reduce the circuit depth for performing phase estimation tasks on early fault-tolerant quantum computers.
arXiv Detail & Related papers (2022-11-22T03:15:40Z) - Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy [1.14219428942199]
We propose an Ising formulation of integer optimization problems to utilize quantum annealing in the iterative improvement strategy.
We analytically show that a first-order phase transition is successfully avoided for a fully connected ferro Potts model if the overlap between a ground state and a candidate solution exceeds a threshold.
arXiv Detail & Related papers (2022-11-08T02:12:49Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
We argue that noise makes evaluations of the objective function via quantum circuits biased.
We derive the missing guarantees and find that the rate of convergence is unaffected.
arXiv Detail & Related papers (2022-09-21T19:18:41Z) - Quantum Sparse Coding [5.130440339897477]
We develop a quantum-inspired algorithm for sparse coding.
The emergence of quantum computers and Ising machines can potentially lead to more accurate estimations.
We conduct numerical experiments with simulated data on Lightr's quantum-inspired digital platform.
arXiv Detail & Related papers (2022-09-08T13:00:30Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Gaussian Elimination versus Greedy Methods for the Synthesis of Linear
Reversible Circuits [0.0]
reversible circuits represent a subclass of reversible circuits with many applications in quantum computing.
We propose a new algorithm for any linear reversible operator by using an optimized version of the Gaussian elimination algorithm and a tuned LU factorization.
Overall, our algorithms improve the state-of-the-art methods for specific ranges of problem sizes.
arXiv Detail & Related papers (2022-01-17T16:31:42Z) - Reducing the Variance of Gaussian Process Hyperparameter Optimization
with Preconditioning [54.01682318834995]
Preconditioning is a highly effective step for any iterative method involving matrix-vector multiplication.
We prove that preconditioning has an additional benefit that has been previously unexplored.
It simultaneously can reduce variance at essentially negligible cost.
arXiv Detail & Related papers (2021-07-01T06:43:11Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.