Geometric two-qubit gates in silicon-based double quantum dots
- URL: http://arxiv.org/abs/2409.00601v1
- Date: Sun, 1 Sep 2024 03:39:22 GMT
- Title: Geometric two-qubit gates in silicon-based double quantum dots
- Authors: Yong-Yang Lu, Kejin Wei, Chengxian Zhang,
- Abstract summary: We propose strategy to implement geometric two-qubit gates for silicon-based spin qubits.
It is found that the implemented geometric gates can obtain fidelities surpassing 99% for the noise level related to the experiments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving high-fidelity two-qubit gates is crucial for spin qubits in silicon double quantum dots. However, the two-qubit gates in experiments are easily suffered from charge noise, which is still a key challenge. Geometric gates which implement gate operations employing pure geometric phase are believed to be a powerful way to realize robust control. In this work, we theoretically propose feasible strategy to implement geometric two-qubit gates for silicon-based spin qubits considering experimental control environments. By working in the suitable region where the local magnetic field gradient is much larger than the exchange interaction, we are able to implement entangling and non-entangling geometric gates via analytical and numerical methods. It is found that the implemented geometric gates can obtain fidelities surpassing 99\% for the noise level related to the experiments. Also, they can outperform the dynamical opertations. Our work paves a way to implement high-fidelity geometric gate for spin qubits in silicon.
Related papers
- Quantum control landscape for generation of $H$ and $T$ gates in an open
qubit with both coherent and environmental drive [57.70351255180495]
An important problem in quantum computation is generation of single-qubit quantum gates such as Hadamard ($H$) and $pi/8$ ($T$)
Here we consider the problem of optimal generation of $H$ and $T$ gates using coherent control and the environment as a resource acting on the qubit via incoherent control.
arXiv Detail & Related papers (2023-09-05T09:05:27Z) - State-independent geometric quantum gates via nonadiabatic and noncyclic
evolution [10.356589142632922]
We propose a scheme for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths.
We show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path.
These high-trivial quantum gates are promising for large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-09-04T02:55:58Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Path-optimized nonadiabatic geometric quantum computation on
superconducting qubits [3.98625523260655]
We propose a path-optimized scheme for geometric quantum computation on superconducting transmon qubits.
We find that the constructed geometric gates can be superior to their corresponding dynamical ones under different local errors.
Our scheme provides a new perspective for geometric quantum computation, making it more promising in the application of large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2021-10-12T15:26:26Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z) - Implementation of geometric quantum gates on microwave-driven
semiconductor charge qubits [9.88147281393944]
A semiconductor-based charge qubit, confined in double quantum dots, can be a platform to implement quantum computing.
We provide a theoretical framework to implement universal geometric quantum gates in this system.
arXiv Detail & Related papers (2020-04-01T03:21:46Z) - High-fidelity and Robust Geometric Quantum Gates that Outperform
Dynamical Ones [5.781900408390438]
We propose a general framework of geometric quantum computation with the integration of the time-optimal control technique.
Our scheme provides a promising alternative way towards scalable fault-tolerant solid-state quantum computation.
arXiv Detail & Related papers (2020-01-16T13:28:10Z) - High-fidelity geometric gate for silicon-based spin qubits [10.725358962826192]
We present a protocol to realize universal nonadiabatic geometric gates for silicon-based spin qubits.
We find that the advantage of geometric gates over dynamical gates depends crucially on the evolution loop for the construction of the geometric phase.
arXiv Detail & Related papers (2020-01-14T15:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.