Artificial Intelligence in Gastrointestinal Bleeding Analysis for Video Capsule Endoscopy: Insights, Innovations, and Prospects (2008-2023)
- URL: http://arxiv.org/abs/2409.00639v1
- Date: Sun, 1 Sep 2024 07:13:28 GMT
- Title: Artificial Intelligence in Gastrointestinal Bleeding Analysis for Video Capsule Endoscopy: Insights, Innovations, and Prospects (2008-2023)
- Authors: Tanisha Singh, Shreshtha Jha, Nidhi Bhatt, Palak Handa, Nidhi Goel, Sreedevi Indu,
- Abstract summary: An estimated 300,000 annual deaths worldwide are associated with gastrointestinal (GI) bleeding.
Video Capsule Endoscopy (VCE) has marked a significant advancement, offering a comprehensive, non-invasive visualization of the digestive tract.
Despite its benefits, the efficacy of VCE is hindered by diagnostic challenges, including time-consuming analysis and susceptibility to human error.
This review assesses the current state of Machine Learning (ML) methodologies in bleeding detection, highlighting their effectiveness, challenges, and prospective directions.
- Score: 0.7119794757408745
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The escalating global mortality and morbidity rates associated with gastrointestinal (GI) bleeding, compounded by the complexities and limitations of traditional endoscopic methods, underscore the urgent need for a critical review of current methodologies used for addressing this condition. With an estimated 300,000 annual deaths worldwide, the demand for innovative diagnostic and therapeutic strategies is paramount. The introduction of Video Capsule Endoscopy (VCE) has marked a significant advancement, offering a comprehensive, non-invasive visualization of the digestive tract that is pivotal for detecting bleeding sources unattainable by traditional methods. Despite its benefits, the efficacy of VCE is hindered by diagnostic challenges, including time-consuming analysis and susceptibility to human error. This backdrop sets the stage for exploring Machine Learning (ML) applications in automating GI bleeding detection within capsule endoscopy, aiming to enhance diagnostic accuracy, reduce manual labor, and improve patient outcomes. Through an exhaustive analysis of 113 papers published between 2008 and 2023, this review assesses the current state of ML methodologies in bleeding detection, highlighting their effectiveness, challenges, and prospective directions. It contributes an in-depth examination of AI techniques in VCE frame analysis, offering insights into open-source datasets, mathematical performance metrics, and technique categorization. The paper sets a foundation for future research to overcome existing challenges, advancing gastrointestinal diagnostics through interdisciplinary collaboration and innovation in ML applications.
Related papers
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models [46.05020842978823]
Large Language Models (LLMs) have emerged as powerful tools to navigate this complex data landscape.
RAGGED is a comprehensive workflow designed to support investigators with knowledge integration and hypothesis generation.
arXiv Detail & Related papers (2024-07-17T07:44:18Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Artificial Intelligence in Bone Metastasis Analysis: Current Advancements, Opportunities and Challenges [15.765725731972983]
This review highlights the current state-of-the-art and advancements for Bone Metastases analysis using artificial intelligence.
ML technologies can achieve promising performance for BM analysis and have significant potential to improve clinician efficiency and cope with time and cost limitations.
arXiv Detail & Related papers (2024-04-30T14:49:03Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Current and future roles of artificial intelligence in retinopathy of
prematurity [14.333209377077058]
Retinopathy of prematurity (ROP) is a severe condition affecting premature infants.
Recent advancements in deep learning (DL), especially convolutional neural networks (CNNs) have significantly improved ROP detection and classification.
The i-ROP deep learning (i-ROP-DL) system also shows promise in detecting plus disease, offering reliable ROP diagnosis potential.
arXiv Detail & Related papers (2024-02-15T14:35:02Z) - The Significance of Machine Learning in Clinical Disease Diagnosis: A
Review [0.0]
This research investigates the capacity of machine learning algorithms to improve the transmission of heart rate data in time series healthcare metrics.
The factors under consideration include the algorithm utilized, the types of diseases targeted, the data types employed, the applications, and the evaluation metrics.
arXiv Detail & Related papers (2023-10-25T20:28:22Z) - Deep Learning and Computer Vision for Glaucoma Detection: A Review [0.8379286663107844]
Glaucoma is the leading cause of irreversible blindness worldwide.
Recent advances in computer vision and deep learning have demonstrated the potential for automated assessment.
We survey recent studies on AI-based glaucoma diagnosis using fundus, optical coherence tomography, and visual field images.
arXiv Detail & Related papers (2023-07-31T09:49:51Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Deep learning for detection and segmentation of artefact and disease
instances in gastrointestinal endoscopy [7.840459682652335]
The Endoscopy Computer Vision Challenge (EndoCV) is a crowd-sourcing initiative to address eminent problems in developing reliable computer aided detection and diagnosis endoscopy systems.
There are several core challenges often faced by endoscopists, mainly: 1) presence of multi-class artefacts that hinder their visual interpretation, and 2) difficulty in identifying subtle precancerous precursors and cancer abnormalities.
EndoCV 2020 challenges are designed to address research questions in these remits.
arXiv Detail & Related papers (2020-10-12T21:22:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.