Sagnac interferometer-based noise-free superresolution using phase-controlled quantum erasers
- URL: http://arxiv.org/abs/2503.10101v2
- Date: Sat, 15 Mar 2025 14:54:52 GMT
- Title: Sagnac interferometer-based noise-free superresolution using phase-controlled quantum erasers
- Authors: Byoung S. Ham,
- Abstract summary: A Sagnac interferometer-based superresolution is proposed to solve environmental noises inevitable in an interferometer.<n>A spatial light modulator takes over the role of phase-controlled quantum erasers to solve the linear optics-based complexity issue.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interferometer-based precision measurements have been intensively studied for sensing and metrology over the past half century. In classical optics, the resolution and phase sensitivity of an optical signal are confined by diffraction limit and shot-noise limit (SNL), respectively. Highly entangled photon pairs, i.e., N00N states have been adapted to overcome SNL in quantum sensing over the last two decades. Recently, coherent light-excited quantum sensing has also been proposed and demonstrated for macroscopic quantum sensing to overcome the limited N scalability in N00N-based quantum sensing. Here, a Sagnac interferometer-based superresolution is proposed to solve environmental noises inevitable in an interferometer. Furthermore, a spatial light modulator takes over the role of phase-controlled quantum erasers to solve the linear optics-based complexity issue in the coherently-excited superresolution. Thus, the proposed Sagnac superresolution can beat the state-of-the-art ring laser gyroscope applied for inertial navigation and geodesy.
Related papers
- Wideband covariance magnetometry below the diffraction limit [33.83310724797305]
We experimentally demonstrate a method for measuring correlations of wideband magnetic signals with spatial resolution below the optical diffraction limit.
Our technique employs two nitrogen-vacancy (NV) centers in diamond as nanoscale magnetometers.
arXiv Detail & Related papers (2025-05-01T03:01:48Z) - Ultrasensitive Transverse Deflection Measurement with Two-photon Interference [8.406719933893529]
Hong-Ou-Mandel (HOM) interference is intrinsic quantum phenomena that goes beyond the possibilities of classical physics.
We present an experimental demonstration of a spatial HOM interferometry for measuring the transverse deflection of an optical beam.
arXiv Detail & Related papers (2025-04-06T07:52:43Z) - Acoustic phonon phase gates with number-resolving phonon detection [36.29277627484587]
Itinerant phonons in quantum acoustics, combined with superconducting qubits, offer a compelling alternative to the quantum optics approach.
We implement phonon phase control using the frequency-dependent scattering of phonon states from a superconducting transmon qubit.
The acoustic interferometer used to measure the resulting phonon phase achieves a noise-floor-limited Hong-Ou-Mandel interference visibility of 98.1%.
arXiv Detail & Related papers (2025-03-05T20:56:35Z) - Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Coherence spectroscopy by the Nth power of the measured signal in an interferometer overcoming the diffraction limit [0.0]
Coherence spectroscopy has been intensively studied over the last several decades for various applications in science and engineering.
Here, the Kth power of the measured signal in an N-slit interferometer is studied for enhanced coherence spectroscopy to overcome the resolution limit of the original system.
The Kth power of the intensity beats the resolution limit of the N-slit interferometer, in which the out-of-shelf spectrometer or wavelength meter can be a primary beneficiary.
arXiv Detail & Related papers (2024-05-21T04:04:52Z) - A quantum spectrometer using a pair of phase-controlled spatial light modulators for superresolution in quantum sensing [0.0]
Superresolution is a unique quantum feature generated by N00N states or phase-controlled coherent photons via projection measurements in a Mach-Zehnder interferometer (MZI)
Superresolution has no direct relation with supersensitivity in quantum sensing and has a potential application for the precision measurement of an unknown signal frequency.
arXiv Detail & Related papers (2024-05-14T09:26:36Z) - Intensity product-based optical sensing to beat the diffraction limit in an interferometer [0.0]
In a typical interferometer, the resolution remains in the diffraction limit of the K=1 case unless the interfering photons are resolved as in quantum sensing.
Here, a projection-measurement method in quantum sensing is adapted for an interferometer to achieve an additional square root K gain in resolution.
For the projection measurement, the interference fringe of an interferometer can be Kth-powered to replace the Kth-order intensity product.
arXiv Detail & Related papers (2024-03-19T03:42:45Z) - Observations of super-resolution using phase-controlled coherent photons
in a delayed-choice quantum eraser scheme [15.768497217367257]
Super-resolution overcoming the standard quantum limit has been intensively studied for quantum sensing applications.
Here, we report observations of coherently excited super-resolution using phase-controlled coherent photons.
arXiv Detail & Related papers (2023-12-06T08:35:49Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Quantifying n-photon indistinguishability with a cyclic integrated
interferometer [40.24757332810004]
We report on a universal method to measure the genuine indistinguishability of n-photons.
Our approach relies on a low-depth cyclic multiport interferometer with N = 2n modes.
We experimentally demonstrate this technique for a 8-mode integrated interferometer fabricated using femtosecond laser micromachining.
arXiv Detail & Related papers (2022-01-31T16:30:52Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Coherently driven photonic de Broglie Sagnac interferometer [0.0]
Photonic de Broglie waves (PBW) have been the key feature of such a gain in quantum metrology.
New type of PBW is presented for its potential application of a modified Sagnac interferometer.
arXiv Detail & Related papers (2020-02-05T12:32:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.