Harnessing Quantum Extreme Learning Machines for image classification
- URL: http://arxiv.org/abs/2409.00998v2
- Date: Thu, 3 Oct 2024 17:53:02 GMT
- Title: Harnessing Quantum Extreme Learning Machines for image classification
- Authors: A. De Lorenzis, M. P. Casado, M. P. Estarellas, N. Lo Gullo, T. Lux, F. Plastina, A. Riera, J. Settino,
- Abstract summary: This research work focuses on the use of quantum machine learning techniques for image classification tasks.
We exploit a quantum extreme learning machine by taking advantage of its rich feature map provided by the quantum reservoir substrate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interest in quantum machine learning is increasingly growing due to its potential to offer more efficient solutions for problems that are difficult to tackle with classical methods. In this context, the research work presented here focuses on the use of quantum machine learning techniques for image classification tasks. We exploit a quantum extreme learning machine by taking advantage of its rich feature map provided by the quantum reservoir substrate. We systematically analyse different phases of the quantum extreme learning machine process, from the dataset preparation to the image final classification. In particular, we have tested different encodings, together with Principal Component Analysis, the use of Auto-Encoders, as well as the dynamics of the model through the use of different Hamiltonians for the quantum reservoir. Our results show that the introduction of a quantum reservoir systematically improves the accuracy of the classifier. Additionally, while different encodings can lead to significantly different performances, Hamiltonians with varying degrees of connectivity exhibit the same discrimination rate, provided they are interacting.
Related papers
- Quantum reservoir computing on random regular graphs [0.0]
Quantum reservoir computing (QRC) is a low-complexity learning paradigm that combines input-driven many-body quantum systems with classical learning techniques.
We study information localization, dynamical quantum correlations, and the many-body structure of the disordered Hamiltonian.
Our findings thus provide guidelines for the optimal design of disordered analog quantum learning platforms.
arXiv Detail & Related papers (2024-09-05T16:18:03Z) - Hybrid Quantum-Classical Machine Learning with String Diagrams [49.1574468325115]
This paper develops a formal framework for describing hybrid algorithms in terms of string diagrams.
A notable feature of our string diagrams is the use of functor boxes, which correspond to a quantum-classical interfaces.
arXiv Detail & Related papers (2024-07-04T06:37:16Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Towards Bundle Adjustment for Satellite Imaging via Quantum Machine
Learning [2.660348668799655]
We focus on quantum methods for keypoint extraction and feature matching.
It is explained how these methods can be re-formulated for quantum annealers and gate-based quantum computers.
arXiv Detail & Related papers (2022-04-23T19:33:14Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z) - Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier [0.0]
We propose a novel hybrid variational quantum classifier that combines the quantum gradient descent method with steepest gradient descent to optimise the parameters of the network.
We find that this algorithm has a better learning outcome than a classical neural network or a quantum machine learning method trained with a non-quantum optimisation method.
arXiv Detail & Related papers (2020-10-14T18:05:49Z) - Quantum Adversarial Machine Learning [0.0]
Adrial machine learning is an emerging field that focuses on studying vulnerabilities of machine learning approaches in adversarial settings.
In this paper, we explore different adversarial scenarios in the context of quantum machine learning.
We find that a quantum classifier that achieves nearly the state-of-the-art accuracy can be conclusively deceived by adversarial examples.
arXiv Detail & Related papers (2019-12-31T19:00:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.