論文の概要: Integrating End-to-End and Modular Driving Approaches for Online Corner Case Detection in Autonomous Driving
- arxiv url: http://arxiv.org/abs/2409.01178v1
- Date: Mon, 2 Sep 2024 11:14:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 07:01:54.890622
- Title: Integrating End-to-End and Modular Driving Approaches for Online Corner Case Detection in Autonomous Driving
- Title(参考訳): 自律運転におけるオンラインコーナーケース検出のためのエンド・ツー・エンド・エンドとモジュラー・ドライビング・アプローチの統合
- Authors: Gemb Kaljavesi, Xiyan Su, Frank Diermeyer,
- Abstract要約: 本稿では,エンド・ツー・エンドのアプローチをモジュールシステムに統合したオンラインコーナーケース検出手法を提案する。
以上の結果から,状況認識に優れるエンド・ツー・エンドのネットワークは,コーナケースの検出に効果的に寄与することが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Online corner case detection is crucial for ensuring safety in autonomous driving vehicles. Current autonomous driving approaches can be categorized into modular approaches and end-to-end approaches. To leverage the advantages of both, we propose a method for online corner case detection that integrates an end-to-end approach into a modular system. The modular system takes over the primary driving task and the end-to-end network runs in parallel as a secondary one, the disagreement between the systems is then used for corner case detection. We implement this method on a real vehicle and evaluate it qualitatively. Our results demonstrate that end-to-end networks, known for their superior situational awareness, as secondary driving systems, can effectively contribute to corner case detection. These findings suggest that such an approach holds potential for enhancing the safety of autonomous vehicles.
- Abstract(参考訳): オンラインコーナーケース検出は、自動運転車の安全性を確保するために不可欠である。
現在の自律運転アプローチは、モジュラーアプローチとエンドツーエンドアプローチに分類することができる。
両手法の利点を生かして,エンド・ツー・エンドのアプローチをモジュールシステムに統合したオンラインコーナーケース検出手法を提案する。
モジュールシステムは一次駆動タスクを引き継ぎ、エンド・ツー・エンドのネットワークは二次駆動として並列に動作し、システム間の不一致をコーナーケース検出に使用する。
本手法を実車に実装し,定性的に評価する。
本研究は,2次駆動システムとして,状況認識の優れたエンド・ツー・エンドネットワークが,コーナケースの検出に有効であることを示す。
これらのことから,このようなアプローチは自動運転車の安全性を高める可能性を秘めていると考えられる。
関連論文リスト
- A Computer Vision Approach for Autonomous Cars to Drive Safe at Construction Zone [0.0]
自律運転システム(ADS)を搭載した車は、適応クルーズ制御、衝突警報、自動駐車など、様々な最先端機能を備えている。
本稿では,多様なドリフト条件下で構築ゾーンや機能で動作可能なコンピュータビジョン技術を利用した,革新的で高精度な道路障害物検出モデルを提案する。
論文 参考訳(メタデータ) (2024-09-24T07:11:00Z) - Autonomous Vehicle Decision-Making Framework for Considering Malicious
Behavior at Unsignalized Intersections [7.245712580297489]
自動運転車では、報酬信号は安全や効率などのフィードバック要因に関する通常の報酬として設定される。
本稿では,緊急時の安全性を高めるために,可変重み付けパラメータによって安全ゲインを変調する。
この決定フレームワークは、無人の交差点で潜在的に悪意のある振る舞いをする車両に遭遇する際に、自律走行車両が情報的決定を行うことを可能にする。
論文 参考訳(メタデータ) (2024-09-11T03:57:44Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
本稿では,エンドツーエンド自動運転の因果関係を探究し,分析するための包括的アプローチを提案する。
私たちの研究は、エンドツーエンドの自動運転の謎を初めて明らかにし、ブラックボックスを白い箱に変えた。
論文 参考訳(メタデータ) (2024-07-09T04:56:11Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Recent Advancements in End-to-End Autonomous Driving using Deep
Learning: A Survey [9.385936248154987]
エンド・ツー・エンドの運転は、モジュラーシステムに関連する欠点を回避するため、有望なパラダイムである。
エンド・ツー・エンド自動運転の最近の進歩は分析され、基礎原理に基づいて研究が分類される。
本稿では,最先端の評価,課題の特定,今後の可能性を探る。
論文 参考訳(メタデータ) (2023-07-10T07:00:06Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Integrated Decision and Control for High-Level Automated Vehicles by
Mixed Policy Gradient and Its Experiment Verification [10.393343763237452]
本稿では,IDC(Integrated Decision and Control)に基づく自己進化型意思決定システムを提案する。
制約付き混合ポリシー勾配 (CMPG) と呼ばれるRLアルゴリズムは、IDCの駆動ポリシーを継続的に更新するために提案される。
実験結果から, モデルに基づく手法よりも運転能力の向上が期待できることがわかった。
論文 参考訳(メタデータ) (2022-10-19T14:58:41Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
本稿では,視覚に基づくエンドツーエンド自動運転のための安全保証学習フレームワークを提案する。
我々は、勾配降下によりエンドツーエンドに訓練された微分制御バリア関数(dCBF)を備えた学習システムを設計する。
論文 参考訳(メタデータ) (2022-03-04T16:14:33Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - A Survey of End-to-End Driving: Architectures and Training Methods [0.9449650062296824]
私たちは、運転パイプライン全体を1つのニューラルネットワークに置き換える、いわゆるエンドツーエンドの自動運転アプローチについて、より深く検討しています。
本稿では,エンド・ツー・エンド駆動文学における学習方法,入力・出力モダリティ,ネットワークアーキテクチャ,評価スキームについてレビューする。
我々は、エンドツーエンドの自動運転システムの最も有望な要素を組み合わせたアーキテクチャでレビューを締めくくります。
論文 参考訳(メタデータ) (2020-03-13T17:42:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。