論文の概要: Improving Robustness of Spectrogram Classifiers with Neural Stochastic Differential Equations
- arxiv url: http://arxiv.org/abs/2409.01532v1
- Date: Tue, 3 Sep 2024 02:03:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 03:21:06.691766
- Title: Improving Robustness of Spectrogram Classifiers with Neural Stochastic Differential Equations
- Title(参考訳): ニューラル確率微分方程式を用いた分光器のロバスト性の向上
- Authors: Joel Brogan, Olivera Kotevska, Anibely Torres, Sumit Jha, Mark Adams,
- Abstract要約: スペクトログラムに適用されたコンピュータビジョンに基づくディープラーニングモデルは、信号の分類と検出の分野で有用であることが証明されている。
これらの方法は、非ビジョン信号処理タスクに固有の低信号対雑音比を扱うように設計されていない。
- 参考スコア(独自算出の注目度): 4.259762400898358
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Signal analysis and classification is fraught with high levels of noise and perturbation. Computer-vision-based deep learning models applied to spectrograms have proven useful in the field of signal classification and detection; however, these methods aren't designed to handle the low signal-to-noise ratios inherent within non-vision signal processing tasks. While they are powerful, they are currently not the method of choice in the inherently noisy and dynamic critical infrastructure domain, such as smart-grid sensing, anomaly detection, and non-intrusive load monitoring.
- Abstract(参考訳): 信号解析と分類は、高いレベルのノイズと摂動で区切られている。
コンピュータビジョンに基づくディープラーニングモデルは信号分類と検出の分野で有用であることが証明されているが、これらの手法は非ビジョン信号処理タスクに固有の低信号-雑音比を扱うように設計されていない。
それらは強力だが、現時点では、スマートグリッドセンシング、異常検出、非侵襲的な負荷監視など、本質的にノイズの多いダイナミックなインフラストラクチャドメインの選択方法ではない。
関連論文リスト
- Quantifying Noise of Dynamic Vision Sensor [49.665407116447454]
動的視覚センサ(DVS)は、大量のバックグラウンドアクティビティ(BA)ノイズによって特徴付けられる。
標準的な画像処理技術を用いて,ノイズとクリーン化センサ信号とを区別することは困難である。
Detrended Fluctuation Analysis (DFA) から得られたBAノイズを特徴付ける新しい手法が提案されている。
論文 参考訳(メタデータ) (2024-04-02T13:43:08Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
時間遅延ニューラルネットワークとヒストグラム層を組み合わせた新しい手法により,特徴学習の改善と水中音響目標分類を実現する。
提案手法はベースラインモデルより優れており,受動的ソナー目標認識のための統計的文脈を取り入れた有効性を示す。
論文 参考訳(メタデータ) (2023-07-25T19:47:26Z) - Training Process of Unsupervised Learning Architecture for Gravity Spy
Dataset [2.8555963243398073]
重力波検出器のデータに現れる過渡ノイズは、しばしば問題を引き起こす。
過渡ノイズは環境や機器と関連していると考えられているため、その分類は、その起源を理解し、検出器の性能を向上させるのに役立つだろう。
前報では、教師なしディープラーニングと変分オートエンコーダと不変情報クラスタリングを組み合わせた、時間周波数2次元画像(分光図)を用いた過渡雑音の分類アーキテクチャを提案する。
先進レーザ干渉計重力波観測装置(Advanced Laser Interferometer Gravitational-Wave Observatory)からなる重力スピーデータセットに,教師なし学習アーキテクチャを適用した。
論文 参考訳(メタデータ) (2022-08-07T02:51:36Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
暗黙的ニューラル表現(INR)のアーキテクチャ的帰納的バイアスを利用した代替的認知戦略を提案する。
提案手法は,低雑音シナリオや実雑音シナリオの広い範囲において,既存のゼロショット復調手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-05T12:46:36Z) - Edge Detection and Deep Learning Based SETI Signal Classification Method [0.0]
バークレーSETI研究センターの科学者が地球外知的生命体(SETI)を探索中
無線信号をフーリエ変換によりスペクトルに変換し、2次元時間周波数スペクトルで表される信号を分類する。
本稿では,背景雑音がスペクトル分類の精度に与える影響を考察し,新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-29T04:31:48Z) - Unsupervised Learning Architecture for Classifying the Transient Noise
of Interferometric Gravitational-wave Detectors [2.8555963243398073]
非定常・非ガウス的特徴を持つ過渡雑音は高い速度で発生する。
過渡雑音の分類は、その起源を探索し、検出器の性能を向上させる手がかりを与えることができる。
本研究では,過渡雑音の分類のための教師なし学習アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-11-19T05:37:06Z) - Canonical Polyadic Decomposition and Deep Learning for Machine Fault
Detection [0.0]
マシンからあらゆる種類の障害を学ぶのに十分なデータを集めることは不可能である。
健康状態のみのデータを用いてトレーニングされた新しいアルゴリズムを開発し、教師なしの異常検出を行った。
これらのアルゴリズムの開発における重要な問題は、異常検出性能に影響を与える信号のノイズである。
論文 参考訳(メタデータ) (2021-07-20T14:06:50Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
分析や分類に有用な特徴を効率的に抽出する識別機構を備えた生体音響信号分類器を提案する。
タスク指向の現在のバイオ音響認識法とは異なり、提案モデルは入力信号をベクトル部分空間に変換することに依存する。
提案法の有効性は,アヌラン,ミツバチ,蚊の3種の生物音響データを用いて検証した。
論文 参考訳(メタデータ) (2021-03-18T11:01:21Z) - Learning based signal detection for MIMO systems with unknown noise
statistics [84.02122699723536]
本論文では,未知のノイズ統計による信号を堅牢に検出する一般化最大確率(ML)推定器を考案する。
実際には、システムノイズに関する統計的な知識はほとんどなく、場合によっては非ガウス的であり、衝動的であり、分析不可能である。
我々のフレームワークは、ノイズサンプルのみを必要とする教師なしの学習アプローチによって駆動される。
論文 参考訳(メタデータ) (2021-01-21T04:48:15Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。