When 3D Partial Points Meets SAM: Tooth Point Cloud Segmentation with Sparse Labels
- URL: http://arxiv.org/abs/2409.01691v1
- Date: Tue, 3 Sep 2024 08:14:56 GMT
- Title: When 3D Partial Points Meets SAM: Tooth Point Cloud Segmentation with Sparse Labels
- Authors: Yifan Liu, Wuyang Li, Cheng Wang, Hui Chen, Yixuan Yuan,
- Abstract summary: Tooth point cloud segmentation is a fundamental task in many orthodontic applications.
Recent weakly-supervised alternatives are proposed to use weak labels for 3D segmentation and achieve promising results.
We propose a framework named SAMTooth that leverages such capacity to complement the extremely sparse supervision.
- Score: 39.54551717450374
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Tooth point cloud segmentation is a fundamental task in many orthodontic applications. Current research mainly focuses on fully supervised learning which demands expensive and tedious manual point-wise annotation. Although recent weakly-supervised alternatives are proposed to use weak labels for 3D segmentation and achieve promising results, they tend to fail when the labels are extremely sparse. Inspired by the powerful promptable segmentation capability of the Segment Anything Model (SAM), we propose a framework named SAMTooth that leverages such capacity to complement the extremely sparse supervision. To automatically generate appropriate point prompts for SAM, we propose a novel Confidence-aware Prompt Generation strategy, where coarse category predictions are aggregated with confidence-aware filtering. Furthermore, to fully exploit the structural and shape clues in SAM's outputs for assisting the 3D feature learning, we advance a Mask-guided Representation Learning that re-projects the generated tooth masks of SAM into 3D space and constrains these points of different teeth to possess distinguished representations. To demonstrate the effectiveness of the framework, we conduct experiments on the public dataset and surprisingly find with only 0.1\% annotations (one point per tooth), our method can surpass recent weakly supervised methods by a large margin, and the performance is even comparable to the recent fully-supervised methods, showcasing the significant potential of applying SAM to 3D perception tasks with sparse labels. Code is available at https://github.com/CUHK-AIM-Group/SAMTooth.
Related papers
- PointSAM: Pointly-Supervised Segment Anything Model for Remote Sensing Images [16.662173255725463]
We propose a novel Pointly-supervised Segment Anything Model named PointSAM.
We conduct experiments on RSI datasets, including WHU, HRSID, and NWPU VHR-10.
The results show that our method significantly outperforms direct testing with SAM, SAM2, and other comparison methods.
arXiv Detail & Related papers (2024-09-20T11:02:18Z) - Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3D segmentation is a core problem in computer vision.
densely labeling 3D point clouds to employ fully-supervised training remains too labor intensive and expensive.
Semi-supervised training provides a more practical alternative, where only a small set of labeled data is given, accompanied by a larger unlabeled set.
arXiv Detail & Related papers (2024-09-12T14:54:31Z) - Multi-modality Affinity Inference for Weakly Supervised 3D Semantic
Segmentation [47.81638388980828]
We propose a simple yet effective scene-level weakly supervised point cloud segmentation method with a newly introduced multi-modality point affinity inference module.
Our method outperforms the state-of-the-art by 4% to 6% mIoU on the ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2023-12-27T14:01:35Z) - Weakly Supervised 3D Instance Segmentation without Instance-level
Annotations [57.615325809883636]
3D semantic scene understanding tasks have achieved great success with the emergence of deep learning, but often require a huge amount of manually annotated training data.
We propose the first weakly-supervised 3D instance segmentation method that only requires categorical semantic labels as supervision.
By generating pseudo instance labels from categorical semantic labels, our designed approach can also assist existing methods for learning 3D instance segmentation at reduced annotation cost.
arXiv Detail & Related papers (2023-08-03T12:30:52Z) - How to Efficiently Adapt Large Segmentation Model(SAM) to Medical Images [15.181219203629643]
Segment Anything (SAM) exhibits impressive capabilities in zero-shot segmentation for natural images.
However, when applied to medical images, SAM suffers from noticeable performance drop.
In this work, we propose to freeze SAM encoder and finetune a lightweight task-specific prediction head.
arXiv Detail & Related papers (2023-06-23T18:34:30Z) - Semi-supervised 3D Object Detection with Proficient Teachers [114.54835359657707]
Dominated point cloud-based 3D object detectors in autonomous driving scenarios rely heavily on the huge amount of accurately labeled samples.
Pseudo-Labeling methodology is commonly used for SSL frameworks, however, the low-quality predictions from the teacher model have seriously limited its performance.
We propose a new Pseudo-Labeling framework for semi-supervised 3D object detection, by enhancing the teacher model to a proficient one with several necessary designs.
arXiv Detail & Related papers (2022-07-26T04:54:03Z) - Semi-supervised 3D Object Detection via Adaptive Pseudo-Labeling [18.209409027211404]
3D object detection is an important task in computer vision.
Most existing methods require a large number of high-quality 3D annotations, which are expensive to collect.
We propose a novel semi-supervised framework based on pseudo-labeling for outdoor 3D object detection tasks.
arXiv Detail & Related papers (2021-08-15T02:58:43Z) - Dense Supervision Propagation for Weakly Supervised Semantic Segmentation on 3D Point Clouds [59.63231842439687]
We train a semantic point cloud segmentation network with only a small portion of points being labeled.
We propose a cross-sample feature reallocating module to transfer similar features and therefore re-route the gradients across two samples.
Our weakly supervised method with only 10% and 1% of labels can produce compatible results with the fully supervised counterpart.
arXiv Detail & Related papers (2021-07-23T14:34:57Z) - 3D Spatial Recognition without Spatially Labeled 3D [127.6254240158249]
We introduce WyPR, a Weakly-supervised framework for Point cloud Recognition.
We show that WyPR can detect and segment objects in point cloud data without access to any spatial labels at training time.
arXiv Detail & Related papers (2021-05-13T17:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.