論文の概要: Empirical evidence of Large Language Model's influence on human spoken communication
- arxiv url: http://arxiv.org/abs/2409.01754v1
- Date: Tue, 3 Sep 2024 10:01:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 02:01:57.550376
- Title: Empirical evidence of Large Language Model's influence on human spoken communication
- Title(参考訳): 大規模言語モデルが人間の音声コミュニケーションに与える影響の実証的証拠
- Authors: Hiromu Yakura, Ezequiel Lopez-Lopez, Levin Brinkmann, Ignacio Serna, Prateek Gupta, Iyad Rahwan,
- Abstract要約: 人工知能(AI)エージェントは、今や自然言語で何十億もの人間と対話する。
このことは、AIが人間の文化の基本的な側面を形成する可能性を秘めているかどうか、という疑問を提起する。
最近の分析によると、科学出版物はAI固有の言語の証拠をすでに示している。
- 参考スコア(独自算出の注目度): 25.09136621615789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) agents now interact with billions of humans in natural language, thanks to advances in Large Language Models (LLMs) like ChatGPT. This raises the question of whether AI has the potential to shape a fundamental aspect of human culture: the way we speak. Recent analyses revealed that scientific publications already exhibit evidence of AI-specific language. But this evidence is inconclusive, since scientists may simply be using AI to copy-edit their writing. To explore whether AI has influenced human spoken communication, we transcribed and analyzed about 280,000 English-language videos of presentations, talks, and speeches from more than 20,000 YouTube channels of academic institutions. We find a significant shift in the trend of word usage specific to words distinctively associated with ChatGPT following its release. These findings provide the first empirical evidence that humans increasingly imitate LLMs in their spoken language. Our results raise societal and policy-relevant concerns about the potential of AI to unintentionally reduce linguistic diversity, or to be deliberately misused for mass manipulation. They also highlight the need for further investigation into the feedback loops between machine behavior and human culture.
- Abstract(参考訳): 人工知能(AI)エージェントが、ChatGPTのような大規模言語モデル(LLM)の進歩のおかげで、自然言語で数十億の人間と対話できるようになった。
このことは、AIが人間の文化の基本的な側面を形成する可能性を秘めているかどうか、という疑問を提起する。
最近の分析によると、科学出版物はAI固有の言語の証拠をすでに示している。
しかし、この証拠は決定的ではない。科学者は単にAIを使って文章を模倣しているのかもしれない。
AIが人間の音声コミュニケーションに影響を与えたかどうかを調査するため、約280万本の英語のビデオ、プレゼンテーション、講演、スピーチを、学術機関の2万本以上のYouTubeチャンネルから書き起こし分析した。
発表後,ChatGPTに特有な関連のある単語に特有な単語使用傾向が顕著に変化していることが判明した。
これらの発見は、人間が話し言葉でLSMを模倣する最初の経験的証拠である。
我々の結果は、意図せず言語多様性を減らしたり、大量操作のために意図的に誤用されるAIの可能性について、社会的・政策的な懸念を提起する。
彼らはまた、マシンの振る舞いと人間の文化の間のフィードバックループについて、さらなる調査の必要性を強調している。
関連論文リスト
- Distributed agency in second language learning and teaching through generative AI [0.0]
ChatGPTは、テキストまたは音声形式のチャットを通じて非公式な第二言語プラクティスを提供することができる。
インストラクタはAIを使って、さまざまなメディアで学習と評価材料を構築することができる。
論文 参考訳(メタデータ) (2024-03-29T14:55:40Z) - Generation Z's Ability to Discriminate Between AI-generated and
Human-Authored Text on Discord [0.32885740436059047]
DiscordはAI統合を可能にし、主にAI生成コンテンツに"ジェネレーションZ"ユーザベースをさらけ出す。
我々は,AI生成テキストと人間によるテキストの識別能力を評価するため,世代Zの高齢者を対象に調査を行った。
ジェネレーションZの個人は、AIと人間によるテキストを区別できない。
論文 参考訳(メタデータ) (2023-12-31T11:52:15Z) - From Bytes to Biases: Investigating the Cultural Self-Perception of
Large Language Models [0.0]
大型言語モデル(LLM)は、人間と自然に聞こえる会話を行うことができる。
GenAI技術は、トレーニング対象の大規模なデータセットによって導入された幻覚、誤報、および表示バイアスとして知られています。
本研究は, GLOBEプロジェクトに由来する価値質問をChatGPTとBardに促すことにより, LLMの文化的自己認識を探求するものである。
論文 参考訳(メタデータ) (2023-12-21T22:50:14Z) - AI, write an essay for me: A large-scale comparison of human-written
versus ChatGPT-generated essays [66.36541161082856]
ChatGPTや同様の生成AIモデルは、何億人ものユーザーを惹きつけている。
本研究は,ChatGPTが生成した議論的学生エッセイと比較した。
論文 参考訳(メタデータ) (2023-04-24T12:58:28Z) - What Artificial Neural Networks Can Tell Us About Human Language
Acquisition [47.761188531404066]
自然言語処理のための機械学習の急速な進歩は、人間がどのように言語を学ぶかについての議論を変革する可能性がある。
計算モデルによる学習可能性の関連性を高めるためには,人間に対して大きな優位性を持たず,モデル学習者を訓練する必要がある。
論文 参考訳(メタデータ) (2022-08-17T00:12:37Z) - Human Heuristics for AI-Generated Language Are Flawed [8.465228064780744]
我々は,最も個人的かつ連続的な言語である動詞の自己表現が,AIによって生成されたかを検討した。
我々は,これらの単語がAI生成言語の人間の判断を予測可能で操作可能であることを実験的に実証した。
我々は、AIアクセントのようなソリューションについて議論し、AIによって生成された言語の誤認の可能性を減らす。
論文 参考訳(メタデータ) (2022-06-15T03:18:56Z) - CPED: A Large-Scale Chinese Personalized and Emotional Dialogue Dataset
for Conversational AI [48.67259855309959]
会話型AIのための既存のデータセットのほとんどは、人間の個性や感情を無視している。
CPEDは,中国における大規模パーソナライズされた感情対話データセットである。
CPEDには40のテレビ番組から392人の話者の12K以上の対話が含まれている。
論文 参考訳(メタデータ) (2022-05-29T17:45:12Z) - Few-shot Language Coordination by Modeling Theory of Mind [95.54446989205117]
我々は、数ショット$textit language coordinate$のタスクについて研究する。
リードエージェントは、言語能力の異なるエージェントの$textitpopulation$と調整する必要があります。
これは、人間のコミュニケーションの重要な構成要素であるパートナーの信念をモデル化する能力を必要とする。
論文 参考訳(メタデータ) (2021-07-12T19:26:11Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D
World [86.21137454228848]
我々はPIGLeTを物理力学モデルと別言語モデルに分類する。
PIGLeTは文を読み、次に何が起こるか神経的にシミュレートし、その結果を文字通りの記号表現を通して伝達する。
80%以上の英語の文から「次に何が起こるか」を正確に予測することができ、100倍以上のテキスト・テキスト・アプローチを10%以上上回っている。
論文 参考訳(メタデータ) (2021-06-01T02:32:12Z) - Introducing the Talk Markup Language (TalkML):Adding a little social
intelligence to industrial speech interfaces [0.0]
自然言語の理解は、AI研究の最も残念な失敗の1つだ。
本稿では、他の分野からアイデアを取り入れて実装した方法について述べる。
論文 参考訳(メタデータ) (2021-05-24T14:25:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。