論文の概要: LUK: Empowering Log Understanding with Expert Knowledge from Large Language Models
- arxiv url: http://arxiv.org/abs/2409.01909v2
- Date: Fri, 31 Jan 2025 05:51:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:00:04.761690
- Title: LUK: Empowering Log Understanding with Expert Knowledge from Large Language Models
- Title(参考訳): LUK: 大規模言語モデルからのエキスパート知識によるログ理解の強化
- Authors: Lipeng Ma, Weidong Yang, Sihang Jiang, Ben Fei, Mingjie Zhou, Shuhao Li, Mingyu Zhao, Bo Xu, Yanghua Xiao,
- Abstract要約: 小言語モデル (PLM) と大言語モデル (LLM) は、ログ分析における現在の主流のアプローチとなっている。
本稿では,LLMから専門知識を自動取得するLUKと呼ばれる新しい知識向上フレームワークを導入し,これらの知識を用いてログ解析を行うため,より小さなPLMを向上する。
LUKは、異なるログ分析タスクに関する最先端の結果を達成し、LLMからのエキスパート知識をより効果的に利用してログを理解するための広範な実験を行った。
- 参考スコア(独自算出の注目度): 32.65636568742875
- License:
- Abstract: Logs play a critical role in providing essential information for system monitoring and troubleshooting. Recently, with the success of pre-trained language models (PLMs) and large language models (LLMs) in natural language processing (NLP), smaller PLMs (such as BERT) and LLMs (like GPT-4) have become the current mainstream approaches for log analysis. Despite the remarkable capabilities of LLMs, their higher cost and inefficient inference present significant challenges in leveraging the full potential of LLMs to analyze logs. In contrast, smaller PLMs can be fine-tuned for specific tasks even with limited computational resources, making them more practical. However, these smaller PLMs face challenges in understanding logs comprehensively due to their limited expert knowledge. To address the lack of expert knowledge and enhance log understanding for smaller PLMs, this paper introduces a novel and practical knowledge enhancement framework, called LUK, which acquires expert knowledge from LLMs automatically and then enhances the smaller PLM for log analysis with these expert knowledge. LUK can take full advantage of both types of models. Specifically, we design a multi-expert collaboration framework based on LLMs with different roles to acquire expert knowledge. In addition, we propose two novel pre-training tasks to enhance the log pre-training with expert knowledge. LUK achieves state-of-the-art results on different log analysis tasks and extensive experiments demonstrate expert knowledge from LLMs can be utilized more effectively to understand logs. Our source code and detailed experimental data are available at https://github.com/LeaperOvO/LUK.
- Abstract(参考訳): ログはシステム監視とトラブルシューティングに不可欠な情報を提供する上で重要な役割を果たす。
近年、自然言語処理(NLP)における事前学習言語モデル(PLM)と大規模言語モデル(LLM)の成功により、より小さなPLM(BERTなど)やLPM(GPT-4など)がログ解析の主流となっている。
LLMの顕著な能力にもかかわらず、その高いコストと非効率な推論は、LLMの潜在能力を最大限活用してログを解析する上で大きな課題となる。
対照的に、より小さなPLMは限られた計算資源でも特定のタスクに対して微調整できるため、より実用的なものとなる。
しかし、これらの小さなPLMは、専門家の知識が限られているため、ログを包括的に理解する上で困難に直面している。
専門知識の欠如に対処し,より小規模なPLMに対するログ理解を強化するために,LUKと呼ばれる新規かつ実践的な知識向上フレームワークを導入する。
LUKは両方のモデルの利点をフルに活用できる。
具体的には、専門家の知識を得るために、異なる役割を持つLLMをベースとしたマルチエキスパートコラボレーションフレームワークを設計する。
さらに,2つの新しい事前学習タスクを提案し,専門家の知識でログの事前学習を強化する。
LUKは、異なるログ分析タスクに関する最先端の結果を達成し、LLMからのエキスパート知識をより効果的に利用してログを理解するための広範な実験を行った。
ソースコードと詳細な実験データはhttps://github.com/LeaperOvO/LUK.comで公開されています。
関連論文リスト
- Studying and Benchmarking Large Language Models For Log Level Suggestion [49.176736212364496]
大規模言語モデル(LLM)は、様々な領域で研究の焦点となっている。
本稿では,12個のオープンソースLCMのログレベル提案における性能に及ぼす特性と学習パラダイムの影響について検討する。
論文 参考訳(メタデータ) (2024-10-11T03:52:17Z) - Can Large Language Models Understand DL-Lite Ontologies? An Empirical Study [10.051572826948762]
大規模モデル(LLM)は、幅広いタスクを解く上で大きな成果を上げている。
我々は、記述論理(DL-Lite)を理解するLLMの能力を実証的に分析する。
LLMは概念と役割の形式的構文とモデル理論的意味論を理解する。
論文 参考訳(メタデータ) (2024-06-25T13:16:34Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
大規模言語モデル(LLM)は、様々なNLPタスクを実行するのに効果的であるが、広範囲の現実世界の知識を必要とするタスクを扱うのに苦労する。
我々は,関連する疑問に答えるために,長期的事実の知識を必要とするベンチマークを提案する。
実験の結果,LLMだけでこれらの疑問に答えるのに苦労していることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-10T15:10:20Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from
Knowledge Graphs [19.0797968186656]
大規模言語モデル(LLM)は汎用的であり、その創発的能力と一般化性のために異なるタスクを解くことができる。
以前の研究では、グラフニューラルネットワーク(GNN)のような追加モジュールは、外部の知識ベースから取得した知識に基づいて訓練されている。
論文 参考訳(メタデータ) (2023-09-06T15:55:01Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - Give Us the Facts: Enhancing Large Language Models with Knowledge Graphs
for Fact-aware Language Modeling [34.59678835272862]
代表的大規模言語モデル(LLM)であるChatGPTは、その強力な創発的能力のために注目されている。
本稿では,知識グラフ強化大言語モデル(KGLLM)によるLLMの強化を提案する。
KGLLMはLLMの事実推論能力を高めるソリューションを提供し、LLM研究のための新たな道を開く。
論文 参考訳(メタデータ) (2023-06-20T12:21:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。