論文の概要: Modeling IoT Traffic Patterns: Insights from a Statistical Analysis of an MTC Dataset
- arxiv url: http://arxiv.org/abs/2409.01932v1
- Date: Tue, 3 Sep 2024 14:24:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 01:08:09.497587
- Title: Modeling IoT Traffic Patterns: Insights from a Statistical Analysis of an MTC Dataset
- Title(参考訳): IoTトラフィックパターンのモデリング:MSCデータセットの統計的解析からの洞察
- Authors: David E. Ruiz-Guirola, Onel L. A. Løpez, Samuel Montejo-Sanchez,
- Abstract要約: IoT(Internet-of-Things)は急速に拡大し、多くのデバイスを接続し、私たちの日常生活に不可欠なものになっています。
効果的なIoTトラフィック管理には、マシン型通信(MTC)のモデリングと予測が必要である。
我々は、Kolmogorov-Smirnov、Anderson-Darling、chi-squared、ルート平均二乗誤差などの確立されたテストを含む、適合性テストを用いたMCCトラフィックの包括的統計分析を行う。
- 参考スコア(独自算出の注目度): 1.2289361708127877
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Internet-of-Things (IoT) is rapidly expanding, connecting numerous devices and becoming integral to our daily lives. As this occurs, ensuring efficient traffic management becomes crucial. Effective IoT traffic management requires modeling and predicting intrincate machine-type communication (MTC) dynamics, for which machine-learning (ML) techniques are certainly appealing. However, obtaining comprehensive and high-quality datasets, along with accessible platforms for reproducing ML-based predictions, continues to impede the research progress. In this paper, we aim to fill this gap by characterizing the Smart Campus MTC dataset provided by the University of Oulu. Specifically, we perform a comprehensive statistical analysis of the MTC traffic utilizing goodness-of-fit tests, including well-established tests such as Kolmogorov-Smirnov, Anderson-Darling, chi-squared, and root mean square error. The analysis centers on examining and evaluating three models that accurately represent the two most significant MTC traffic types: periodic updating and event-driven, which are also identified from the dataset. The results demonstrate that the models accurately characterize the traffic patterns. The Poisson point process model exhibits the best fit for event-driven patterns with errors below 11%, while the quasi-periodic model fits accurately the periodic updating traffic with errors below 7%.
- Abstract(参考訳): IoT(Internet-of-Things)は急速に拡大し、多くのデバイスを接続し、私たちの日常生活に不可欠なものになっています。
これに伴い、効率的な交通管理の確保が重要となる。
効果的なIoTトラフィック管理には、機械学習(ML)技術が確かに魅力的である、固有のマシン型通信(MTC)のモデリングと予測が必要である。
しかし、MLベースの予測を再現するためのアクセス可能なプラットフォームとともに、包括的で高品質なデータセットを取得することは、研究の進歩を妨げ続けている。
本稿では,オウル大学のSmart Campus MTCデータセットを特徴付けることで,このギャップを埋めることを目的とする。
具体的には,Kolmogorov-Smirnov,Anderson-Darling,chi-squared,root mean square errorなどの確立したテストを含む,適合性試験を用いたMCCトラフィックの包括的統計解析を行う。
この分析は、データセットから識別される定期的な更新とイベント駆動の2つの重要なMSCトラフィックタイプを正確に表現する3つのモデルを調べ、評価することに焦点を当てている。
その結果,モデルが交通パターンを正確に特徴付けることがわかった。
Poissonポイントプロセスモデルは11%未満のエラーを伴うイベント駆動パターンに最も適しており、準周期モデルは7%未満のエラーを持つ定期的なトラフィックを正確に更新する。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - MetaTrading: An Immersion-Aware Model Trading Framework for Vehicular Metaverse Services [94.61039892220037]
本稿では,車載メタバースにおける拡張現実(AR)サービスの学習モデルを支援するために,メタバースユーザ(MU)にインセンティブを与える新しい没入型モデルトレーディングフレームワークを提案する。
動的ネットワーク条件とプライバシの懸念を考慮して、マルチエージェントマルコフ決定プロセスとしてMSPの報酬決定を定式化する。
実験により,提案フレームワークは,実AR関連車両データセット上でのARサービスにおいて,オブジェクト検出と分類のための高価値モデルを効果的に提供できることが示されている。
論文 参考訳(メタデータ) (2024-10-25T16:20:46Z) - FPMT: Enhanced Semi-Supervised Model for Traffic Incident Detection [0.0]
本論文では、MixTextのフレームワーク内でFPMTと呼ばれる半教師付き学習モデルを提案する。
データ拡張モジュールには、データセットのバランスと拡張のためのGenerative Adversarial Networksが導入されている。
トレーニング戦略では、すべてのデータに対して教師なしのトレーニングを開始し、その後ラベル付きデータのサブセットを教師付き微調整し、最終的にはセミ教師付きトレーニングの目標を達成します。
論文 参考訳(メタデータ) (2024-09-12T08:38:42Z) - Towards a Transformer-Based Pre-trained Model for IoT Traffic Classification [0.6060461053918144]
最先端の分類法はDeep Learningに基づいている。
実際の状況では、IoTトラフィックデータが不足しているため、モデルのパフォーマンスはそれほど良くない。
大規模なラベル付きトランスフォーマーベースのIoTトラフィックデータセット上で事前トレーニングされたIoTトラフィック分類変換器(ITCT)を提案する。
実験の結果、ITCTモデルは既存のモデルよりも大幅に優れ、全体的な精度は82%に達した。
論文 参考訳(メタデータ) (2024-07-26T19:13:11Z) - Urban Traffic Forecasting with Integrated Travel Time and Data Availability in a Conformal Graph Neural Network Framework [0.6554326244334868]
最先端のモデルは、可能な限り最良の方法でデータを考えるのに苦労することが多い。
本稿では,駅間の移動時間をグラフニューラルネットワークアーキテクチャの重み付き隣接行列に組み込む新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-07-17T01:11:07Z) - Energy-Guided Data Sampling for Traffic Prediction with Mini Training Datasets [13.065729535009925]
本稿では、畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)アーキテクチャを融合して、トラフィックフローのダイナミクスを予測する革新的なソリューションを提案する。
本研究の重要な成果は,小規模な交通システムを対象としたシミュレーションから,大規模交通システムのトレーニングデータをサンプリングできることである。
論文 参考訳(メタデータ) (2024-03-27T15:57:42Z) - CCDSReFormer: Traffic Flow Prediction with a Criss-Crossed Dual-Stream Enhanced Rectified Transformer Model [32.45713037210818]
我々はCriss-Crossed Dual-Stream Enhanced Rectified Transformer Model (CCDSReFormer)を紹介する。
ReSSA(Enhanced Rectified Spatial Self-attention)、ReDASA(Enhanced Rectified Delay Aware Self-attention)、ReTSA(Enhanced Rectified Temporal Self-attention)の3つの革新的なモジュールが含まれている。
これらのモジュールは、疎注意による計算ニーズの低減、トラフィックダイナミクスの理解向上のためのローカル情報への注力、ユニークな学習手法による空間的および時間的洞察の融合を目的としている。
論文 参考訳(メタデータ) (2024-03-26T14:43:57Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
効果的なシミュレーションの鍵となる要素は、人間の知識と整合した現実的な交通モデルの導入である。
本研究では,現実主義に対する人間の嗜好のニュアンスを捉えることと,多様な交通シミュレーションモデルを統合することの2つの主な課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-01T19:29:53Z) - Transforming Model Prediction for Tracking [109.08417327309937]
トランスフォーマーは、誘導バイアスの少ないグローバルな関係を捉え、より強力なターゲットモデルの予測を学ぶことができる。
提案したトラッカーをエンドツーエンドにトレーニングし、複数のトラッカーデータセットに関する総合的な実験を行うことで、その性能を検証する。
我々のトラッカーは3つのベンチマークで新しい技術状態を設定し、挑戦的なLaSOTデータセットで68.5%のAUCを達成した。
論文 参考訳(メタデータ) (2022-03-21T17:59:40Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。