論文の概要: Synthetic Data Generation and Automated Multidimensional Data Labeling for AI/ML in General and Circular Coordinates
- arxiv url: http://arxiv.org/abs/2409.02079v1
- Date: Tue, 3 Sep 2024 17:26:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 00:04:31.253456
- Title: Synthetic Data Generation and Automated Multidimensional Data Labeling for AI/ML in General and Circular Coordinates
- Title(参考訳): 一般・循環座標系におけるAI/MLのための合成データ生成と自動多次元データラベリング
- Authors: Alice Williams, Boris Kovalerchuk,
- Abstract要約: 本稿では,合成データ生成と自動データラベリングに対する統一的なアプローチを提案する。
一般ラインコーディネート(GLC)は、複数のGLCでn-Dデータを視覚化するために用いられる。
実データによる結果はケーススタディで実証され、分類器への影響を評価する。
- 参考スコア(独自算出の注目度): 2.9465623430708905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Insufficient amounts of available training data is a critical challenge for both development and deployment of artificial intelligence and machine learning (AI/ML) models. This paper proposes a unified approach to both synthetic data generation (SDG) and automated data labeling (ADL) with a unified SDG-ADL algorithm. SDG-ADL uses multidimensional (n-D) representations of data visualized losslessly with General Line Coordinates (GLCs), relying on reversible GLC properties to visualize n-D data in multiple GLCs. This paper demonstrates use of the new Circular Coordinates in Static and Dynamic forms, used with Parallel Coordinates and Shifted Paired Coordinates, since each GLC exemplifies unique data properties, such as interattribute n-D distributions and outlier detection. The approach is interactively implemented in computer software with the Dynamic Coordinates Visualization system (DCVis). Results with real data are demonstrated in case studies, evaluating impact on classifiers.
- Abstract(参考訳): 人工知能と機械学習(AI/ML)モデルの開発と展開の両方において、十分な量のトレーニングデータが不足していることが重要な課題である。
本稿では,SDG-ADLアルゴリズムを用いた合成データ生成(SDG)と自動データラベリング(ADL)の両方に対する統一的なアプローチを提案する。
SDG-ADLは、GLC(General Line Coordinates)と無作為に視覚化されたデータの多次元(n-D)表現を使用し、複数のGLCでn-Dデータを視覚化するために可逆的なGLC特性に依存している。
本稿では,Parallel CoordinatesとShifted Paired Coordinatesを併用した静的および動的形状における新しいCircular Coordinatesの利用について述べる。
この手法は動的コーディネート・ビジュアライゼーション・システム(DCVis)を用いてコンピュータ・ソフトウェアでインタラクティブに実装されている。
実データによる結果はケーススタディで実証され、分類器への影響を評価する。
関連論文リスト
- General Line Coordinates in 3D [2.9465623430708905]
3Dビジュアライゼーションにおける解釈可能なインタラクティブな視覚パターン発見は、機械学習を前進させる有望な方法である。
GLC (3D General Line Coordinates) 可視化空間で行われ、3D内のすべてのn-D情報を保存している。
論文 参考訳(メタデータ) (2024-03-17T17:42:20Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
脳波信号物理を利用した教師なし手法を提案する。
脳波チャンネルをフィールド、ソースフリーなドメイン適応を用いて固定位置にマッピングする。
提案手法は脳-コンピュータインタフェース(BCI)タスクおよび潜在的なバイオマーカー応用におけるロバストな性能を示す。
論文 参考訳(メタデータ) (2024-03-07T16:17:33Z) - Full High-Dimensional Intelligible Learning In 2-D Lossless
Visualization Space [7.005458308454871]
本研究では,2次元可視化空間(2次元ML)における機械学習分類タスクの新しい手法について検討する。
これは、抽象的なn次元空間でn次元データを処理する必要のない、完全な機械学習アプローチであることが示されている。
2次元空間におけるn-Dパターンの発見を可能にし、n-Dデータのグラフ表現を用いてn-D情報を失うことなく2次元空間におけるn-Dパターンの発見を可能にする。
論文 参考訳(メタデータ) (2023-05-29T00:21:56Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - GAN-Supervised Dense Visual Alignment [95.37027391102684]
本稿では,識別モデル学習のためのフレームワークであるGAN-Supervised Learningと,GAN生成した学習データをエンドツーエンドで共同で学習する手法を提案する。
従来のCongealing法にインスパイアされた我々のGANgealingアルゴリズムは、Spatial Transformerを訓練し、不整合データに基づいて訓練されたGANのランダムなサンプルを共通の目標モードにマッピングする。
論文 参考訳(メタデータ) (2021-12-09T18:59:58Z) - GenURL: A General Framework for Unsupervised Representation Learning [58.59752389815001]
教師なし表現学習(URL)は、教師なしの高次元データのコンパクトな埋め込みを学習する。
本稿では,様々なURLタスクにスムーズに適応可能な類似性ベースの統合URLフレームワークGenURLを提案する。
実験により、GenURLは、自己教師付き視覚学習、無教師付き知識蒸留(KD)、グラフ埋め込み(GE)、次元縮小において、一貫した最先端性能を達成することが示された。
論文 参考訳(メタデータ) (2021-10-27T16:24:39Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
人物再識別(re-ID)は、ビデオ監視に広く応用されているため、ますます注目を集めている。
残念なことに、主流のディープラーニング手法では、モデルをトレーニングするために大量のラベル付きデータが必要です。
本稿では,コンピュータゲーム内で合成されたre-IDサンプルを自動的に生成するデータコレクタを開発し,同時にアノテートするデータラベラを構築した。
論文 参考訳(メタデータ) (2021-09-12T15:51:41Z) - Conditional Generation of Synthetic Geospatial Images from Pixel-level
and Feature-level Inputs [0.0]
画素レベル条件 (PLC) と特徴レベル条件 (FLC) を同時に条件付きで合成する条件生成モデル VAE-Info-cGAN を提案する。
提案モデルでは,道路網の時間的表現のみを条件に,異なる地理的位置をまたいだ様々な形態のマクロアグリゲーションを高精度に生成することができる。
論文 参考訳(メタデータ) (2021-09-11T06:58:19Z) - VAE-Info-cGAN: Generating Synthetic Images by Combining Pixel-level and
Feature-level Geospatial Conditional Inputs [0.0]
画素レベル(PLC)と特徴レベル(FLC)を同時に条件付けした意味的リッチな画像を合成するための条件生成モデルを提案する。
GPSデータセットを用いた実験では,提案モデルが地理的に異なる場所にまたがる様々な形態のマクロアグリゲーションを正確に生成できることが示されている。
論文 参考訳(メタデータ) (2020-12-08T03:46:19Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
教師なしクラスタリングのためのDual-AAE(Dual-AAE)を提案する。
Dual-AAEの目的関数に対する変分推論を行うことで,一対のオートエンコーダをトレーニングすることで最適化可能な新たな再構成損失を導出する。
4つのベンチマーク実験により、Dual-AAEは最先端のクラスタリング手法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-08-23T13:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。