論文の概要: Large Language Models and Cognitive Science: A Comprehensive Review of Similarities, Differences, and Challenges
- arxiv url: http://arxiv.org/abs/2409.02387v6
- Date: Wed, 11 Dec 2024 04:12:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:00:08.884814
- Title: Large Language Models and Cognitive Science: A Comprehensive Review of Similarities, Differences, and Challenges
- Title(参考訳): 大規模言語モデルと認知科学 : 類似性・相違・課題の包括的考察
- Authors: Qian Niu, Junyu Liu, Ziqian Bi, Pohsun Feng, Benji Peng, Keyu Chen, Ming Li, Lawrence KQ Yan, Yichao Zhang, Caitlyn Heqi Yin, Cheng Fei, Tianyang Wang, Yunze Wang, Silin Chen, Ming Liu,
- Abstract要約: 本稿では,Large Language Models(LLM)と認知科学の交わりについて概観する。
我々は,LLMの認知能力を評価する手法を分析し,認知モデルとしての可能性について議論する。
我々はLLMの認知バイアスと限界を評価し,その性能向上手法を提案する。
- 参考スコア(独自算出の注目度): 14.739357670600102
- License:
- Abstract: This comprehensive review explores the intersection of Large Language Models (LLMs) and cognitive science, examining similarities and differences between LLMs and human cognitive processes. We analyze methods for evaluating LLMs cognitive abilities and discuss their potential as cognitive models. The review covers applications of LLMs in various cognitive fields, highlighting insights gained for cognitive science research. We assess cognitive biases and limitations of LLMs, along with proposed methods for improving their performance. The integration of LLMs with cognitive architectures is examined, revealing promising avenues for enhancing artificial intelligence (AI) capabilities. Key challenges and future research directions are identified, emphasizing the need for continued refinement of LLMs to better align with human cognition. This review provides a balanced perspective on the current state and future potential of LLMs in advancing our understanding of both artificial and human intelligence.
- Abstract(参考訳): この総合的なレビューでは、LLMと人間の認知過程の類似点と相違点について、Large Language Models(LLM)と認知科学の交わりについて考察する。
我々は,LLMの認知能力を評価する手法を分析し,認知モデルとしての可能性について議論する。
このレビューでは、認知科学研究で得られた知見を取り上げ、様々な認知分野におけるLLMの応用を取り上げている。
我々はLLMの認知バイアスと限界を評価し,その性能向上手法を提案する。
LLMと認知アーキテクチャの統合について検討し、人工知能(AI)能力を向上するための有望な道を明らかにする。
主要な課題と今後の研究方向が特定され、人間の認知とよりよく整合するLLMの継続的な改良の必要性を強調している。
このレビューは、人工知能と人間の知性の両方の理解を深める上で、LLMの現状と将来の可能性について、バランスのとれた視点を提供する。
関連論文リスト
- A Survey on Human-Centric LLMs [11.49752599240738]
大型言語モデル(LLM)は人間の認知と行動をシミュレートすることができる。
この調査は個々のタスクと集合タスクの両方のパフォーマンスに焦点を当てている。
論文 参考訳(メタデータ) (2024-11-20T12:34:44Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - CogLM: Tracking Cognitive Development of Large Language Models [20.138831477848615]
我々は、Piaget's Theory of Cognitive Developmentに基づくベンチマークCogLMを構築した。
CogLMは、20人以上の専門家によって作られた10の認知能力にまたがる1220の質問で構成されている。
20歳児に匹敵する高度なLPM(GPT-4)にヒトのような認知能力が出現していることが判明した。
論文 参考訳(メタデータ) (2024-08-17T09:49:40Z) - Predicting and Understanding Human Action Decisions: Insights from Large Language Models and Cognitive Instance-Based Learning [0.0]
大きな言語モデル(LLM)は、様々なタスクにまたがってその能力を実証している。
本稿では,LLMの推論と生成能力を利用して,2つの逐次意思決定タスクにおける人間の行動を予測する。
我々は,LLMの性能を,人間の経験的意思決定を模倣した認知的インスタンスベース学習モデルと比較した。
論文 参考訳(メタデータ) (2024-07-12T14:13:06Z) - The Potential and Challenges of Evaluating Attitudes, Opinions, and Values in Large Language Models [28.743404185915697]
本稿では,Large Language Models (LLMs) における態度, 意見, 価値 (AOVs) の評価に関する最近の研究の概要について概説する。
これにより、社会科学におけるモデル、人間とAIの整合性、下流の応用を理解するための可能性と課題に対処する。
論文 参考訳(メタデータ) (2024-06-16T22:59:18Z) - Evaluating the External and Parametric Knowledge Fusion of Large Language Models [72.40026897037814]
我々は、知識融合シナリオをシミュレートするデータ構築と知識注入のための体系的なパイプラインを開発する。
本研究は, LLMにおけるパラメトリック知識の強化が, 知識統合能力を大幅に向上させることを明らかにした。
本研究の目的は,LLM内の外部およびパラメトリック知識の調和を図ることにある。
論文 参考訳(メタデータ) (2024-05-29T11:48:27Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
大規模言語モデル(LLM)は、様々なタスクにまたがる例外的なパフォーマンスを示すだけでなく、知性の火花も示している。
近年の研究では、人間の試験における能力の評価に焦点が当てられ、異なる領域における彼らの印象的な能力を明らかにしている。
ブルーム分類に基づく人体検査データセットであるMoocRadarを用いて評価を行った。
論文 参考訳(メタデータ) (2023-10-12T09:55:45Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - Do Large Language Models Know What They Don't Know? [74.65014158544011]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクに優れた知識を持つ。
膨大な知識にもかかわらず、LLMはそれらが適合し理解できる情報の量によって制限されている。
本研究の目的は,LLMの自己理解能力を評価することである。
論文 参考訳(メタデータ) (2023-05-29T15:30:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。