論文の概要: Demographic parity in regression and classification within the unawareness framework
- arxiv url: http://arxiv.org/abs/2409.02471v1
- Date: Wed, 4 Sep 2024 06:43:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 20:02:12.305510
- Title: Demographic parity in regression and classification within the unawareness framework
- Title(参考訳): 未知の枠組みにおける回帰と分類のデモグラフィックパリティ
- Authors: Vincent Divol, Solenne Gaucher,
- Abstract要約: 2次損失を最小化する際の最適値回帰関数を特徴付ける。
また,最適公正コスト感性分類と最適公正回帰の関連性についても検討した。
- 参考スコア(独自算出の注目度): 8.057006406834466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the theoretical foundations of fair regression under the constraint of demographic parity within the unawareness framework, where disparate treatment is prohibited, extending existing results where such treatment is permitted. Specifically, we aim to characterize the optimal fair regression function when minimizing the quadratic loss. Our results reveal that this function is given by the solution to a barycenter problem with optimal transport costs. Additionally, we study the connection between optimal fair cost-sensitive classification, and optimal fair regression. We demonstrate that nestedness of the decision sets of the classifiers is both necessary and sufficient to establish a form of equivalence between classification and regression. Under this nestedness assumption, the optimal classifiers can be derived by applying thresholds to the optimal fair regression function; conversely, the optimal fair regression function is characterized by the family of cost-sensitive classifiers.
- Abstract(参考訳): 本稿では, 異なる治療が禁止されている無意識の枠組みにおいて, 人口格差の制約の下での公正回帰の理論的基礎を考察し, 既存の治療が許可されている結果を拡張した。
具体的には,2次損失を最小化する際に最適値回帰関数を特徴付けることを目的とする。
本結果から, 輸送コストが最適であるバリセンタ問題に対する解法により, この関数が与えられることが明らかとなった。
さらに,最適公正コスト感性分類と最適公正回帰の関連について検討した。
分類器の決定集合のネスト性は、分類と回帰の等価性の形式を確立するのに必要かつ十分であることを示す。
このネステッドネスの仮定の下では、最適回帰関数にしきい値を適用することで最適分類器を導出することができる。
関連論文リスト
- Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
オンライン報酬指標の偏りのないオフライン推定を最適化する意思決定ポリシーを学習することを目指している。
学習シナリオにおける同値性に基づく単一のフレームワークを提案する。
我々のフレームワークは、分散最適非バイアス推定器の特徴付けを可能にし、それに対する閉形式解を提供する。
論文 参考訳(メタデータ) (2024-05-09T12:52:22Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Mean Parity Fair Regression in RKHS [43.98593032593897]
平均パリティ(MP)フェアネスという概念の下で,公平回帰問題を考察する。
再生カーネルヒルベルト空間(RKHS)を利用してこの問題に対処する。
効率よく実装でき、解釈可能なトレードオフを提供する、対応する回帰関数を導出する。
論文 参考訳(メタデータ) (2023-02-21T02:44:50Z) - Fair learning with Wasserstein barycenters for non-decomposable
performance measures [8.508198765617198]
本研究は,人口順の制約下での精度の最大化が,対応する回帰問題の解法と等価であることを示す。
この結果を線形屈折法分類尺度(例えば$rm F$-score、AM測度、平衡精度など)に拡張する。
論文 参考訳(メタデータ) (2022-09-01T13:06:43Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
本稿では,実効的かつ理論的に証明可能なアルゴリズムであるオフラインRLに対するfalSe Correlation Reduction (SCORE)を提案する。
SCOREは、標準ベンチマーク(D4RL)において、様々なタスクにおいて3.1倍の高速化でSoTA性能を達成することを実証的に示す。
論文 参考訳(メタデータ) (2021-10-24T15:34:03Z) - Achieving Fairness with a Simple Ridge Penalty [0.0]
本稿では,このタスクに対して,ユーザ定義の公平度制約を適用した,よりフレキシブルなアプローチを提案する。
我々の提案は、以前のアプローチの3つの制限を生んでいる。
論文 参考訳(メタデータ) (2021-05-18T15:43:57Z) - Addressing Fairness in Classification with a Model-Agnostic
Multi-Objective Algorithm [33.145522561104464]
分類における公平性の目標は、人種や性別などのセンシティブな属性に基づいて個人のグループを識別しない分類器を学習することである。
公正アルゴリズムを設計する1つのアプローチは、公正の概念の緩和を正規化項として使うことである。
我々はこの性質を利用して、既存の緩和よりも証明可能な公正の概念を近似する微分可能な緩和を定義する。
論文 参考訳(メタデータ) (2020-09-09T17:40:24Z) - Fair Regression with Wasserstein Barycenters [39.818025466204055]
本稿では, 実数値関数を学習し, 実数値関数の制約を満たす問題について検討する。
予測された出力の分布は、センシティブな属性から独立することを要求する。
フェア回帰と最適輸送理論の関連性を確立し、最適なフェア予測器に対するクローズドフォーム表現を導出する。
論文 参考訳(メタデータ) (2020-06-12T16:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。