Practical techniques for high-precision measurements on near-term quantum hardware and applications in molecular energy estimation
- URL: http://arxiv.org/abs/2409.02575v2
- Date: Thu, 17 Jul 2025 09:15:40 GMT
- Title: Practical techniques for high-precision measurements on near-term quantum hardware and applications in molecular energy estimation
- Authors: Keijo Korhonen, Hetta Vappula, Adam Glos, Marco Cattaneo, Zoltán Zimborás, Elsi-Mari Borrelli, Matteo A. C. Rossi, Guillermo García-Pérez, Daniel Cavalcanti,
- Abstract summary: This paper implements techniques to reach accuracies essential for quantum chemistry by addressing key overheads and noise sources.<n>We demonstrate these techniques via molecular energy estimation of the BODIPY molecule on a Hartree-Fock state on an IBM Eagle r3.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Achieving high-precision measurements on near-term quantum devices is critical for advancing quantum computing applications. Quantum computers suffer from high readout errors, making quantum simulations with high accuracy requirements particularly challenging. This paper implements practical techniques to reach accuracies essential for quantum chemistry by addressing key overheads and noise sources. Specifically, we leverage locally biased random measurements for reducing shot overhead, repeated settings with parallel quantum detector tomography for reducing circuit overhead and mitigating readout errors, and blended scheduling for mitigating time-dependent noise. We demonstrate these techniques via molecular energy estimation of the BODIPY molecule on a Hartree-Fock state on an IBM Eagle r3, obtaining a reduction in measurement errors by an order of magnitude from 1-5% to 0.16%. These strategies pave the way for more reliable quantum computations, particularly for applications requiring precise molecular energy calculations.
Related papers
- Limitations of Quantum Hardware for Molecular Energy Estimation Using VQE [0.0]
Variational quantum eigensolvers (VQEs) are among the most promising quantum algorithms for solving electronic structure problems in quantum chemistry.<n>In this study, we investigate the capabilities and limitations of VQE algorithms implemented on current quantum hardware.
arXiv Detail & Related papers (2025-06-04T14:19:18Z) - Mitigating shot noise in local overlapping quantum tomography with semidefinite programming [0.0]
Reduced density matrices (RDMs) are fundamental in quantum information processing.
We propose a method to mitigate shot noise by re-enforcing certain constraints on RDMs.
We demonstrate the versatility and efficacy of our method by integrating it into an algorithmic cooling procedure.
arXiv Detail & Related papers (2025-01-30T18:17:13Z) - Harnessing quantum back-action for time-series processing [0.0]
We show that incorporating weak measurements into a quantum machine-learning protocol provides advantages in both execution time scaling and overall performance.
This work provides a comprehensive and practical recipe to promote the implementation of weak measurement-based protocols in quantum reservoir computing.
arXiv Detail & Related papers (2024-11-06T15:15:04Z) - Experimental demonstration of Robust Amplitude Estimation on near-term quantum devices for chemistry applications [36.136619420474766]
This study explores hardware implementation of Robust Amplitude Estimation (RAE) on IBM quantum devices.
We demonstrate its application in quantum chemistry for one- and two-qubit Hamiltonian systems.
arXiv Detail & Related papers (2024-10-01T13:42:01Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Precision ground-state energy calculation for the water molecule on a
superconducting quantum processor [0.0]
The accurate computation of properties of large molecular systems is classically infeasible and is one of the applications in which it is hoped that quantum computers will demonstrate an advantage over classical devices.
Here, we apply the Quantum Computed Moments (QCM) approach combined with a variety of noise-mitigation techniques to an 8 qubit/spin-orbital representation of the water molecule (H$O).
A noise-stable improvement on the variational result for a 4-excitation trial-state (circuit depth 25, 22 CNOTs) was obtained, with the ground-state energy computed to be within $1.4pm1.2$ m
arXiv Detail & Related papers (2023-11-05T01:05:58Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Statistical phase estimation and error mitigation on a superconducting
quantum processor [2.624902795082451]
We practically implement statistical phase estimation on Rigetti's superconducting processors.
We incorporate error mitigation strategies including zero-noise extrapolation and readout error mitigation with bit-flip averaging.
Our work demonstrates that statistical phase estimation has a natural resilience to noise, particularly after mitigating coherent errors.
arXiv Detail & Related papers (2023-04-11T10:40:22Z) - Guaranteed efficient energy estimation of quantum many-body Hamiltonians
using ShadowGrouping [55.47824411563162]
Estimation of the energy of quantum many-body systems is a paradigmatic task in various research fields.
We aim to find the optimal strategy with single-qubit measurements that yields the highest provable accuracy given a total measurement budget.
We develop a practical, efficient estimation strategy, which we call ShadowGrouping.
arXiv Detail & Related papers (2023-01-09T14:41:07Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Hardware-efficient entangled measurements for variational quantum
algorithms [0.0]
Variational algorithms can be used to solve practical problems using noisy intermediate-scale quantum (NISQ) devices.
We propose hardware-efficient entangled measurements (HEEM), that is, measurements that permit only between physically connected qubits.
We show that this strategy enhances the evaluation of molecular Hamiltonians in NISQ devices by reducing the number of circuits required.
arXiv Detail & Related papers (2022-02-14T19:00:16Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Chemistry beyond the Hartree-Fock limit via quantum computed moments [0.0]
We implement the quantum computed moments (QCM) approach for hydrogen chain molecular systems up to H$_6$.
Results provide strong evidence for the error suppression capability of the QCM method, particularly when coupled with post-processing error mitigation.
Greater emphasis on more efficient representations of the Hamiltonian and classical preprocessing steps may enable the solution of larger systems on near-term quantum processors.
arXiv Detail & Related papers (2021-11-15T23:04:23Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Learning to Measure: Adaptive Informationally Complete Generalized
Measurements for Quantum Algorithms [0.0]
We present an algorithm that optimize informationally complete positive operator-valued measurements (POVMs) on the fly.
We show its advantage by improving the efficiency of the variational quantum eigensolver in calculating ground-state energies of molecular Hamiltonians.
In addition, the informational completeness of the approach offers a crucial advantage, as the measurement data can be reused to infer other quantities of interest.
arXiv Detail & Related papers (2021-04-01T15:49:05Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - Scalable quantum processor noise characterization [57.57666052437813]
We present a scalable way to construct approximate MFMs for many-qubit devices based on cumulant expansion.
Our method can also be used to characterize various types of correlation error.
arXiv Detail & Related papers (2020-06-02T17:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.