論文の概要: Pooling And Attention: What Are Effective Designs For LLm-Based Embedding Models?
- arxiv url: http://arxiv.org/abs/2409.02727v1
- Date: Wed, 4 Sep 2024 14:01:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 17:55:43.333269
- Title: Pooling And Attention: What Are Effective Designs For LLm-Based Embedding Models?
- Title(参考訳): プールと注意:LLmベースの埋め込みモデルに効果的な設計は何か?
- Authors: Yixuan Tang, Yi Yang,
- Abstract要約: 我々は,最後の層だけでなく,すべての隠蔽層の出力を横断的ネットワークを用いて変換する,新しいプーリング戦略であるMulti-Layers Trainable Poolingを提案する。
本稿では,LLMをベースとした埋め込みモデルの効果的なトレーニング戦略について述べる。
- 参考スコア(独自算出の注目度): 18.990655668481075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The significant advancements of Large Language Models (LLMs) in generative tasks have led to a growing body of work exploring LLM-based embedding models. While these models, employing different pooling and attention strategies, have achieved state-of-the-art performance on public embedding benchmarks, questions still arise about what constitutes an effective design for LLM-based embedding models. However, these models are often trained on different datasets, using different LLM base models or training settings. Moreover, evaluations on public embedding benchmarks often fail to report statistical significance, making it difficult to determine which designs truly contribute to final performance. This complicates the process for practitioners seeking optimal training recipes for LLM-based embedding models. In this study, we conduct a large-scale experiment by training a series of LLM-based embedding models using the same training data and base model but differing in their pooling and attention strategies. The results show that there is no one-size-fits-all solution: while bidirectional attention and an additional trainable pooling layer outperform in text similarity and information retrieval tasks, they do not significantly surpass simpler designs like EOS-last token pooling and default causal attention in clustering and classification tasks. Furthermore, we propose a new pooling strategy, Multi-Layers Trainable Pooling, which transforms the outputs of all hidden layers, rather than just the last layer, using a cross-attention network. This method proves to be statistically superior in text similarity and retrieval tasks compared to existing pooling methods. Overall, this paper sheds light on effective training strategies for LLM-based embedding models.
- Abstract(参考訳): ジェネレーティブタスクにおける大規模言語モデル(LLM)の大幅な進歩は、LLMベースの埋め込みモデルを探究する活動の活発化に繋がった。
これらのモデルは、様々なプーリングとアテンション戦略を採用し、公開埋め込みベンチマークで最先端のパフォーマンスを達成したが、LLMベースの埋め込みモデルにとって効果的な設計は何かという疑問が残る。
しかしながら、これらのモデルは、異なるLLMベースモデルやトレーニング設定を使用して、異なるデータセットでトレーニングされることが多い。
さらに、公開埋め込みベンチマークの評価では、しばしば統計的意義を報告できず、どの設計が最終的な性能に本当に貢献するかを判断することが困難である。
これは、LCMベースの埋め込みモデルのための最適なトレーニングレシピを求める実践者にとって、複雑なプロセスである。
本研究では,同じトレーニングデータとベースモデルを用いて,LLMをベースとした一連の埋め込みモデルをトレーニングすることで,大規模な実験を行う。
双方向の注意と追加のトレーニング可能なプーリング層は、テキスト類似性や情報検索タスクよりも優れているが、EOS-lastトークンプーリングやクラスタリングや分類タスクにおけるデフォルト因果的注意など、より単純な設計をはるかに上回っているわけではない。
さらに,最後の層に留まらず,すべての隠蔽層から出力を変換するマルチ層学習型プール方式を提案する。
この手法は,既存のプーリング法と比較して,テキスト類似性や検索タスクにおいて統計的に優れていることを示す。
本稿では,LLMをベースとした埋め込みモデルの効果的なトレーニング戦略について概説する。
関連論文リスト
- A Comprehensive Analysis on LLM-based Node Classification Algorithms [21.120619437937382]
我々はLarge Language Models (LLMs) を用いたノード分類のための包括的でテストベッドを開発する。
10のデータセット、8つのLLMベースのアルゴリズム、3つの学習パラダイムを含み、新しいメソッドとデータセットで簡単に拡張できるように設計されている。
パフォーマンスに影響を与える重要な設定を決定するために、広範な実験、トレーニング、および2200以上のモデルの評価を行います。
その結果, LLM法は半教師付き環境で従来の手法を著しく上回り, その利点は教師付き環境ではごくわずかである,という8つの知見が得られた。
論文 参考訳(メタデータ) (2025-02-02T15:56:05Z) - Towards Better Understanding Table Instruction Tuning: Decoupling the Effects from Data versus Models [62.47618742274461]
既存の公開トレーニングデータセットに基づいて、Mistral、OLMo、Phiファミリーからベースモデルを微調整します。
我々のレプリケーションは、既存のテーブルLLMと同等以上のパフォーマンスを実現しています。
トレーニングデータとベースモデルのコントリビューションを分離し、個々の影響に関する洞察を提供する。
論文 参考訳(メタデータ) (2025-01-24T18:50:26Z) - The Inherent Limits of Pretrained LLMs: The Unexpected Convergence of Instruction Tuning and In-Context Learning Capabilities [51.594836904623534]
本研究は,インコンテキストの例を用いて誘導されるベースモデルと,命令調整モデルが根本的に異なる機能を持つかどうかを考察する。
命令調整モデルの性能は,基本モデルのコンテキスト内性能と大きく相関していることを示す。
具体的には、この理解を命令付きモデルに拡張し、事前学習データも同様に、解決可能なタスクの制限境界を設定することを示唆する。
論文 参考訳(メタデータ) (2025-01-15T10:57:55Z) - LLMs are Also Effective Embedding Models: An In-depth Overview [40.53941563464671]
大規模言語モデル(LLM)は、様々なタスクで最先端のパフォーマンスを達成することによって、自然言語処理に革命をもたらした。
近年、埋め込みモデルとしての有効性が注目され、ELMoやBERTのような従来のエンコーダのみのモデルから、GPT、LLaMA、Mistralのようなデコーダのみの大規模LLMへとパラダイムシフトした。
論文 参考訳(メタデータ) (2024-12-17T06:48:24Z) - Comparative Analysis of Pooling Mechanisms in LLMs: A Sentiment Analysis Perspective [0.0]
BERTやGPTのようなトランスフォーマーベースのモデルは、トークンレベルの埋め込みを文レベルの表現に集約するためにプール層に依存している。
Mean、Max、Weighted Sumといった一般的なプール機構は、この集約プロセスにおいて重要な役割を果たす。
本稿では,これらのプール機構が文レベル感情分析の文脈における2つの著名なLCMファミリー(BERTとGPT)に与える影響について検討する。
論文 参考訳(メタデータ) (2024-11-22T00:59:25Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild [84.57103623507082]
本稿では,全体論的な大規模言語モデルスケーリングガイドラインであるModel-GLUEを紹介する。
既存のスケーリングテクニック,特に選択的マージ,および混合の変種をベンチマークする。
次に、異種モデル動物園の選択と集約のための最適な戦略を定式化する。
我々の手法は、マージ可能なモデルのクラスタリング、最適なマージ戦略選択、クラスタの統合を含む。
論文 参考訳(メタデータ) (2024-10-07T15:55:55Z) - SoupLM: Model Integration in Large Language and Multi-Modal Models [51.12227693121004]
大規模言語モデル(LLM)の訓練には、かなりの計算資源が必要である。
既存の公開LLMは通常、さまざまなタスクにまたがる、多種多様なプライベートにキュレートされたデータセットで事前トレーニングされる。
論文 参考訳(メタデータ) (2024-07-11T05:38:15Z) - NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models [38.41524186248607]
我々はNV-Embedモデルを導入し、アーキテクチャ設計、トレーニング手順、キュレートされたデータセットを取り入れた。
モデルアーキテクチャでは、プール埋め込みを得るための潜在注意層を提案し、連続的に検索と下流タスクの精度を向上する。
トレーニングデータには, 埋込みモデルの性能向上のために, 強負のマイニング, 合成データ生成, 既存の公開データセットを利用する。
論文 参考訳(メタデータ) (2024-05-27T17:59:45Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。