論文の概要: Federated Quantum-Train with Batched Parameter Generation
- arxiv url: http://arxiv.org/abs/2409.02763v1
- Date: Wed, 4 Sep 2024 14:39:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 17:30:00.668468
- Title: Federated Quantum-Train with Batched Parameter Generation
- Title(参考訳): バッチパラメータ生成によるフェデレーション量子トレイン
- Authors: Chen-Yu Liu, Samuel Yen-Chi Chen,
- Abstract要約: 我々は、QTモデルをフェデレートラーニングに統合する、Federated Quantum-Train(QT)フレームワークを紹介する。
提案手法は, 一般化誤差を低減しつつ, 量子ビット使用量を19から8キュービットまで大幅に削減する。
- 参考スコア(独自算出の注目度): 3.697453416360906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we introduce the Federated Quantum-Train (QT) framework, which integrates the QT model into federated learning to leverage quantum computing for distributed learning systems. Quantum client nodes employ Quantum Neural Networks (QNNs) and a mapping model to generate local target model parameters, which are updated and aggregated at a central node. Testing with a VGG-like convolutional neural network on the CIFAR-10 dataset, our approach significantly reduces qubit usage from 19 to as low as 8 qubits while reducing generalization error. The QT method mitigates overfitting observed in classical models, aligning training and testing accuracy and improving performance in highly compressed models. Notably, the Federated QT framework does not require a quantum computer during inference, enhancing practicality given current quantum hardware limitations. This work highlights the potential of integrating quantum techniques into federated learning, paving the way for advancements in quantum machine learning and distributed learning systems.
- Abstract(参考訳): 本稿では、分散学習システムに量子コンピューティングを活用するために、QTモデルをフェデレート学習に統合する、フェデレート量子トレイン(QT)フレームワークを紹介する。
量子クライアントノードは、量子ニューラルネットワーク(QNN)とマッピングモデルを使用して、中央ノードで更新および集約されたローカルターゲットモデルパラメータを生成する。
CIFAR-10データセット上のVGGライクな畳み込みニューラルネットワークを用いて、本手法は、一般化誤差を低減しつつ、キュービット使用量を19から8キュービットに大幅に削減する。
QT法は、古典的なモデルで観測された過度な適合を緩和し、トレーニングとテストの精度を調整し、高度に圧縮されたモデルの性能を向上させる。
特に、Federated QTフレームワークは、現在の量子ハードウェアの制限を前提として、推論中に量子コンピュータを必要とせず、実用性を高めている。
この研究は、量子機械学習と分散学習システムに量子技術を統合する可能性を強調し、量子機械学習と分散学習システムの進歩の道を開く。
関連論文リスト
- A Quantum Leaky Integrate-and-Fire Spiking Neuron and Network [0.0]
量子ニューロモルフィックコンピューティングのための新しいソフトウェアモデルを導入する。
量子スパイクニューラルネットワーク(QSNN)と量子スパイク畳み込みニューラルネットワーク(QSCNN)の構築において,これらのニューロンを構築ブロックとして利用する。
論文 参考訳(メタデータ) (2024-07-23T11:38:06Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
論文 参考訳(メタデータ) (2024-05-18T14:35:57Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From
Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
本稿では,知識蒸留を用いた古典的ニューラルネットワークから量子ニューラルネットワークへ知識を伝達する新しい手法を提案する。
我々は、LeNetやAlexNetのような古典的畳み込みニューラルネットワーク(CNN)アーキテクチャを教師ネットワークとして活用する。
量子モデルは、MNISTデータセットで0.80%、より複雑なFashion MNISTデータセットで5.40%の平均精度改善を達成する。
論文 参考訳(メタデータ) (2023-11-23T05:06:43Z) - Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit [62.55763504085508]
本稿では,変分量子回路(VQC)を用いた古典的量子移動学習アーキテクチャにより,VQCモデルの表現と一般化(推定誤差)が向上することを証明する。
古典-量子遷移学習のアーキテクチャは、事前学習された古典的生成AIモデルを活用し、訓練段階におけるVQCの最適パラメータの発見を容易にする。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
本研究は,変分量子回路に基づく垂直連合学習アーキテクチャを提案し,テキスト分類のための量子化事前学習BERTモデルの競争性能を実証する。
目的分類実験により,提案したBERT-QTCモデルにより,SnipsおよびATIS音声言語データセットの競合実験結果が得られた。
論文 参考訳(メタデータ) (2022-02-17T09:55:21Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。