論文の概要: Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective
- arxiv url: http://arxiv.org/abs/2405.11304v2
- Date: Mon, 10 Jun 2024 16:22:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 23:54:54.062472
- Title: Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective
- Title(参考訳): 量子トレイン:モデル圧縮の観点からのハイブリッド量子古典機械学習の再考
- Authors: Chen-Yu Liu, En-Jui Kuo, Chu-Hsuan Abraham Lin, Jason Gemsun Young, Yeong-Jar Chang, Min-Hsiu Hsieh, Hsi-Sheng Goan,
- Abstract要約: 本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
- 参考スコア(独自算出の注目度): 7.7063925534143705
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduces the Quantum-Train(QT) framework, a novel approach that integrates quantum computing with classical machine learning algorithms to address significant challenges in data encoding, model compression, and inference hardware requirements. Even with a slight decrease in accuracy, QT achieves remarkable results by employing a quantum neural network alongside a classical mapping model, which significantly reduces the parameter count from $M$ to $O(\text{polylog} (M))$ during training. Our experiments demonstrate QT's effectiveness in classification tasks, offering insights into its potential to revolutionize machine learning by leveraging quantum computational advantages. This approach not only improves model efficiency but also reduces generalization errors, showcasing QT's potential across various machine learning applications.
- Abstract(参考訳): 我々は、量子コンピューティングと古典的な機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを導入し、データエンコーディング、モデル圧縮、推論ハードウェア要求における重要な課題に対処する。
精度がわずかに低下しても、QTは古典的なマッピングモデルとともに量子ニューラルネットワークを使用することで、トレーニング中にパラメータカウントを$M$から$O(\text{polylog} (M)$に大幅に削減することで、顕著な結果が得られる。
我々の実験は、分類タスクにおけるQTの有効性を実証し、量子計算の利点を活用して機械学習に革命をもたらす可能性についての洞察を提供する。
このアプローチはモデルの効率を向上するだけでなく、一般化エラーを低減し、さまざまな機械学習アプリケーションにまたがるQTの可能性を示す。
関連論文リスト
- Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz [0.8192907805418583]
量子トレイン(Quantum-Train、QT)は、量子古典機械学習のハイブリッドフレームワークである。
量子状態の測定を古典的なニューラルネットワークの重みにマッピングする。
従来のQTフレームワークでは、このタスクにマルチレイヤパーセプトロン(MLP)を採用しているが、スケーラビリティと解釈可能性に苦慮している。
複数の小さな量子処理ユニットノードを持つ大規模量子機械学習用に設計された分散回路アンサッツを提案する。
論文 参考訳(メタデータ) (2024-09-11T03:51:34Z) - Federated Quantum-Train with Batched Parameter Generation [3.697453416360906]
我々は、QTモデルをフェデレートラーニングに統合する、Federated Quantum-Train(QT)フレームワークを紹介する。
提案手法は, 一般化誤差を低減しつつ, 量子ビット使用量を19から8キュービットまで大幅に削減する。
論文 参考訳(メタデータ) (2024-09-04T14:39:11Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - QTRL: Toward Practical Quantum Reinforcement Learning via Quantum-Train [18.138290778243075]
我々はQTRLと呼ばれる強化学習タスクにQuantum-Train法を適用し、古典的なポリシーネットワークモデルを訓練する。
QTRLのトレーニング結果は古典的なモデルであり、推論段階は古典的なコンピュータのみを必要とする。
論文 参考訳(メタデータ) (2024-07-08T16:41:03Z) - Quantum Mixed-State Self-Attention Network [3.1280831148667105]
本稿では、量子コンピューティングの原理と古典的な機械学習アルゴリズムを統合する新しい量子混合状態注意ネットワーク(QMSAN)を紹介する。
QMSANモデルは混合状態に基づく量子アテンション機構を採用し、量子領域内のクエリとキー間の類似性を効率的に直接推定することを可能にする。
本研究は,QMSANが低雑音に対する可換ロバスト性を有することを示すため,異なる量子雑音環境におけるモデルのロバスト性について検討した。
論文 参考訳(メタデータ) (2024-03-05T11:29:05Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit [62.55763504085508]
本稿では,変分量子回路(VQC)を用いた古典的量子移動学習アーキテクチャにより,VQCモデルの表現と一般化(推定誤差)が向上することを証明する。
古典-量子遷移学習のアーキテクチャは、事前学習された古典的生成AIモデルを活用し、訓練段階におけるVQCの最適パラメータの発見を容易にする。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。