論文の概要: Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz
- arxiv url: http://arxiv.org/abs/2409.06992v1
- Date: Wed, 11 Sep 2024 03:51:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 15:47:11.589763
- Title: Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz
- Title(参考訳): テンソルネットワークマッピングモデルと分散回路アンサッツを用いた量子トレイン
- Authors: Chen-Yu Liu, Chu-Hsuan Abraham Lin, Kuan-Cheng Chen,
- Abstract要約: 量子トレイン(Quantum-Train、QT)は、量子古典機械学習のハイブリッドフレームワークである。
量子状態の測定を古典的なニューラルネットワークの重みにマッピングする。
従来のQTフレームワークでは、このタスクにマルチレイヤパーセプトロン(MLP)を採用しているが、スケーラビリティと解釈可能性に苦慮している。
複数の小さな量子処理ユニットノードを持つ大規模量子機械学習用に設計された分散回路アンサッツを提案する。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the Quantum-Train (QT) framework, mapping quantum state measurements to classical neural network weights is a critical challenge that affects the scalability and efficiency of hybrid quantum-classical models. The traditional QT framework employs a multi-layer perceptron (MLP) for this task, but it struggles with scalability and interpretability. To address these issues, we propose replacing the MLP with a tensor network-based model and introducing a distributed circuit ansatz designed for large-scale quantum machine learning with multiple small quantum processing unit nodes. This approach enhances scalability, efficiently represents high-dimensional data, and maintains a compact model structure. Our enhanced QT framework retains the benefits of reduced parameter count and independence from quantum resources during inference. Experimental results on benchmark datasets demonstrate that the tensor network-based QT framework achieves competitive performance with improved efficiency and generalization, offering a practical solution for scalable hybrid quantum-classical machine learning.
- Abstract(参考訳): 量子トレイン(QT)フレームワークでは、量子状態の測定を古典的なニューラルネットワークの重みにマッピングすることは、ハイブリッド量子古典モデルのスケーラビリティと効率に影響を与える重要な課題である。
従来のQTフレームワークでは、このタスクにマルチレイヤパーセプトロン(MLP)を採用しているが、スケーラビリティと解釈可能性に苦慮している。
これらの問題に対処するため、MLPをテンソルネットワークベースモデルに置き換え、複数の小さな量子処理ユニットノードで大規模量子機械学習用に設計された分散回路アンサッツを提案する。
このアプローチはスケーラビリティを高め、高次元データを効率的に表現し、コンパクトなモデル構造を維持する。
我々の拡張QTフレームワークは、推論中にパラメータカウントを減らし、量子リソースから独立する利点を保っている。
ベンチマークデータセットの実験結果は、テンソルネットワークベースのQTフレームワークが効率と一般化を改善して競争性能を達成し、スケーラブルなハイブリッド量子古典機械学習のための実用的なソリューションを提供することを示した。
関連論文リスト
- Quantum Kernel-Based Long Short-term Memory [0.30723404270319693]
本稿では,Quantum Kernel-Based Long Short-Term Memory (QK-LSTM) ネットワークを導入する。
この量子化アーキテクチャは、効率的な収束、ロバストな損失最小化、モデルコンパクト性を示す。
ベンチマークの結果,QK-LSTMは従来のLSTMモデルと同等の性能を示すが,パラメータは少ない。
論文 参考訳(メタデータ) (2024-11-20T11:39:30Z) - Resource-efficient equivariant quantum convolutional neural networks [0.0]
本研究では、同変分割並列化QCNN(sp-QCNN)と呼ばれる同変量子畳み込みニューラルネットワーク(QCNN)の資源効率モデルを提案する。
グループ理論的アプローチを用いて、以前のsp-QCNNで対処された翻訳対称性を超えて、一般対称性をモデルにエンコードする。
この結果は,実用的な量子機械学習アルゴリズムの進歩に寄与する。
論文 参考訳(メタデータ) (2024-10-02T05:51:33Z) - Federated Quantum-Train with Batched Parameter Generation [3.697453416360906]
我々は、QTモデルをフェデレートラーニングに統合する、Federated Quantum-Train(QT)フレームワークを紹介する。
提案手法は, 一般化誤差を低減しつつ, 量子ビット使用量を19から8キュービットまで大幅に削減する。
論文 参考訳(メタデータ) (2024-09-04T14:39:11Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
論文 参考訳(メタデータ) (2024-05-18T14:35:57Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - Quantum Phase Recognition using Quantum Tensor Networks [0.0]
本稿では,教師付き学習タスクのためのテンソルネットワークにインスパイアされた浅部変分アンザツに基づく量子機械学習手法について検討する。
マルチスケールエンタングルメント再正規化アンサッツ (MERA) とツリーテンソルネットワーク (TTN) がパラメタライズド量子回路にインスパイアされた場合、テストセットの精度が$geq 98%に達する。
論文 参考訳(メタデータ) (2022-12-12T19:29:07Z) - Vertical Layering of Quantized Neural Networks for Heterogeneous
Inference [57.42762335081385]
量子化モデル全体を1つのモデルにカプセル化するための,ニューラルネットワーク重みの新しい垂直層表現について検討する。
理論的には、1つのモデルのトレーニングとメンテナンスのみを必要としながら、オンデマンドサービスの正確なネットワークを達成できます。
論文 参考訳(メタデータ) (2022-12-10T15:57:38Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Quantum Machine Learning with SQUID [64.53556573827525]
分類問題に対するハイブリッド量子古典アルゴリズムを探索するオープンソースフレームワークであるScaled QUantum IDentifier (SQUID)を提案する。
本稿では、一般的なMNISTデータセットから標準バイナリ分類問題にSQUIDを使用する例を示す。
論文 参考訳(メタデータ) (2021-04-30T21:34:11Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。