論文の概要: R2GQA: Retriever-Reader-Generator Question Answering System to Support Students Understanding Legal Regulations in Higher Education
- arxiv url: http://arxiv.org/abs/2409.02840v1
- Date: Wed, 4 Sep 2024 16:12:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 17:11:35.171720
- Title: R2GQA: Retriever-Reader-Generator Question Answering System to Support Students Understanding Legal Regulations in Higher Education
- Title(参考訳): R2GQA:高等教育における法規制の理解を支援するRetriever-Reader-Generator Question Answering System
- Authors: Phuc-Tinh Pham Do, Duy-Ngoc Dinh Cao, Khanh Quoc Tran, Kiet Van Nguyen,
- Abstract要約: R2GQAシステムは、Document Retriever、Machine Reader、Answer Generatorの3つの主要コンポーネントで構成されている。
本稿では,ViRHE4QAデータセット上のR2GQAシステムにおける各モジュールの設計と実装について述べる。
- 参考スコア(独自算出の注目度): 1.0395448371001137
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this article, we propose the R2GQA system, a Retriever-Reader-Generator Question Answering system, consisting of three main components: Document Retriever, Machine Reader, and Answer Generator. The Retriever module employs advanced information retrieval techniques to extract the context of articles from a dataset of legal regulation documents. The Machine Reader module utilizes state-of-the-art natural language understanding algorithms to comprehend the retrieved documents and extract answers. Finally, the Generator module synthesizes the extracted answers into concise and informative responses to questions of students regarding legal regulations. Furthermore, we built the ViRHE4QA dataset in the domain of university training regulations, comprising 9,758 question-answer pairs with a rigorous construction process. This is the first Vietnamese dataset in the higher regulations domain with various types of answers, both extractive and abstractive. In addition, the R2GQA system is the first system to offer abstractive answers in Vietnamese. This paper discusses the design and implementation of each module within the R2GQA system on the ViRHE4QA dataset, highlighting their functionalities and interactions. Furthermore, we present experimental results demonstrating the effectiveness and utility of the proposed system in supporting the comprehension of students of legal regulations in higher education settings. In general, the R2GQA system and the ViRHE4QA dataset promise to contribute significantly to related research and help students navigate complex legal documents and regulations, empowering them to make informed decisions and adhere to institutional policies effectively. Our dataset is available for research purposes.
- Abstract(参考訳): 本稿では,Retriever-Reader-Generator Question Answeringシステムとして,Document Retriever, Machine Reader, Answer Generatorの3つの主要コンポーネントからなるR2GQAシステムを提案する。
Retrieverモジュールは、高度な情報検索技術を使用して、法的規制文書のデータセットから記事のコンテキストを抽出する。
Machine Readerモジュールは、最先端の自然言語理解アルゴリズムを使用して、検索した文書を理解し、回答を抽出する。
最後に、ジェネレータモジュールは、抽出した回答を、法規制に関する学生の質問に対する簡潔で情報的な応答に合成する。
さらに,厳密な建設プロセスを伴う9,758組の質問応答対を含む,大学研修規則の領域にViRHE4QAデータセットを構築した。
これは、高い規制領域におけるベトナム初のデータセットであり、様々な種類の回答があり、抽出的かつ抽象的である。
加えて、R2GQAシステムはベトナム語で抽象的な答えを提供する最初のシステムである。
本稿では,VRHE4QAデータセット上のR2GQAシステム内の各モジュールの設計と実装について述べる。
さらに,高等教育環境における法規制の学生の理解を支援する上で,提案システムの有効性と有用性を示す実験結果を示す。
一般に、R2GQAシステムとViRHE4QAデータセットは、関連する研究に多大な貢献を約束し、学生が複雑な法的文書や規則をナビゲートし、情報的な決定をし、制度的な政策を効果的に遵守する権限を与える。
私たちのデータセットは研究目的で利用可能です。
関連論文リスト
- Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems [14.62114319247837]
Retrieval-augmented Generation (RAG)技術は、大規模言語モデル(LLM)のコンテキスト内学習機能を利用して、より正確で関連する応答を生成する。
重要なコンポーネントであるQuery Rewriterモジュールは、検索フレンドリーなクエリを生成することで知識検索を強化する。
これら4つのRAGモジュールは、RAGシステムの応答品質と効率を相乗的に改善する。
論文 参考訳(メタデータ) (2024-07-15T12:35:00Z) - RichRAG: Crafting Rich Responses for Multi-faceted Queries in Retrieval-Augmented Generation [35.981443744108255]
本稿ではRichRAGという新しいRAGフレームワークを提案する。
これには、入力された質問の潜在的なサブアスペクトを特定するサブアスペクトエクスプローラー、これらのサブアスペクトに関連する多様な外部文書の候補プールを構築するレトリバー、および生成リストワイズローダが含まれる。
2つの公開データセットの実験結果から,我々のフレームワークがユーザに対して包括的かつ満足な応答を効果的に提供できることが証明された。
論文 参考訳(メタデータ) (2024-06-18T12:52:51Z) - Selecting Query-bag as Pseudo Relevance Feedback for Information-seeking Conversations [76.70349332096693]
情報検索対話システムは電子商取引システムで広く利用されている。
クエリバッグに基づくPseudo Relevance Feedback framework(QB-PRF)を提案する。
関連クエリを備えたクエリバッグを構築し、擬似シグナルとして機能し、情報検索の会話をガイドする。
論文 参考訳(メタデータ) (2024-03-22T08:10:32Z) - Seven Failure Points When Engineering a Retrieval Augmented Generation
System [1.8776685617612472]
RAGシステムは,大規模言語モデルからの幻覚応答の問題を解決することを目的としている。
RAGシステムは情報検索システム固有の制限に悩まされている。
本稿では3つのケーススタディからRAGシステムの故障点について報告する。
論文 参考訳(メタデータ) (2024-01-11T12:04:11Z) - Detect, Retrieve, Comprehend: A Flexible Framework for Zero-Shot
Document-Level Question Answering [6.224211330728391]
研究者は貴重な技術知識を含む何千もの学術文書を作成した。
文書レベルの質問応答(QA)は、人間の提案する質問を適応して多様な知識を抽出できる柔軟なフレームワークを提供する。
本稿では,PDFからテキストを抽出する3段階の文書QAアプローチ,抽出したテキストからエビデンスを抽出して適切な文脈を形成する方法,文脈から知識を抽出して高品質な回答を返すためのQAを提案する。
論文 参考訳(メタデータ) (2022-10-04T23:33:52Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
本稿では,文書検索を大規模言語モデル生成器に置き換えることで,知識集約型タスクを解く新しい視点を提案する。
我々は,提案手法をgenRead (genRead) と呼び,まず大きな言語モデルに対して,与えられた質問に基づいて文脈文書を生成し,次に生成された文書を読み出して最終回答を生成する。
論文 参考訳(メタデータ) (2022-09-21T01:30:59Z) - Towards Complex Document Understanding By Discrete Reasoning [77.91722463958743]
VQA(Document Visual Question Answering)は、自然言語による質問に答えるために、視覚的に豊富なドキュメントを理解することを目的としている。
我々は3,067の文書ページと16,558の質問応答ペアからなる新しいドキュメントVQAデータセットTAT-DQAを紹介する。
我々は,テキスト,レイアウト,視覚画像など,多要素の情報を考慮に入れたMHSTという新しいモデルを開発し,異なるタイプの質問にインテリジェントに対処する。
論文 参考訳(メタデータ) (2022-07-25T01:43:19Z) - Open-Retrieval Conversational Machine Reading [80.13988353794586]
会話機械読解では、システムは自然言語規則を解釈し、ハイレベルな質問に答え、フォローアップの明確化を問う必要がある。
既存の作業では、ルールテキストがユーザ毎の質問に対して提供されると仮定し、実際のシナリオにおいて必須の検索ステップを無視する。
本研究では,対話型機械読解のオープンリトリーバル設定を提案し,検討する。
論文 参考訳(メタデータ) (2021-02-17T08:55:01Z) - Distilling Knowledge from Reader to Retriever for Question Answering [16.942581590186343]
我々は,知識蒸留に触発された下流タスクのレトリバーモデルを学ぶ手法を提案する。
質問応答の方法を評価し,最新の結果を得た。
論文 参考訳(メタデータ) (2020-12-08T17:36:34Z) - Open-Retrieval Conversational Question Answering [62.11228261293487]
オープン検索型対話型質問応答 (ORConvQA) の設定を導入する。
ORConvQAのエンド・ツー・エンドシステムを構築し,レトリバー,リランカ,およびすべてトランスフォーマーをベースとしたリーダを特徴とする。
論文 参考訳(メタデータ) (2020-05-22T19:39:50Z) - Retrospective Reader for Machine Reading Comprehension [90.6069071495214]
機械読み取り理解(英: Machine reading comprehension、MRC)とは、機械が与えられた文節に基づいて質問に対する正しい答えを決定することを要求するAIチャレンジである。
不可解な質問が MRC タスクに関与している場合、検証モジュールと呼ばれる本質的な検証モジュールがエンコーダに加えて特に必要となる。
本稿では, MRC タスクに対して, 解答不能な質問に対して, より優れた検証器設計を提案する。
論文 参考訳(メタデータ) (2020-01-27T11:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。