論文の概要: Quantification of stylistic differences in human- and ASR-produced transcripts of African American English
- arxiv url: http://arxiv.org/abs/2409.03059v1
- Date: Wed, 4 Sep 2024 20:18:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 22:55:47.852969
- Title: Quantification of stylistic differences in human- and ASR-produced transcripts of African American English
- Title(参考訳): アフリカ・アメリカン・イングリッシュの人文とASRによる写本の文体的差異の定量化
- Authors: Annika Heuser, Tyler Kendall, Miguel del Rio, Quinten McNamara, Nishchal Bhandari, Corey Miller, Migüel Jetté,
- Abstract要約: 動詞と非動詞の区別は、ASRのパフォーマンス評価において重要な役割を果たす。
アフリカン・アメリカン・イングリッシュ・スピーチの10時間における6つの転写版と4つのASRと2つのASRのスタイリスティックな違いを分類した。
本稿では,これらのカテゴリ間の相互作用と,単語誤り率による書き起こしの精度について検討する。
- 参考スコア(独自算出の注目度): 1.8021379035665333
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Common measures of accuracy used to assess the performance of automatic speech recognition (ASR) systems, as well as human transcribers, conflate multiple sources of error. Stylistic differences, such as verbatim vs non-verbatim, can play a significant role in ASR performance evaluation when differences exist between training and test datasets. The problem is compounded for speech from underrepresented varieties, where the speech to orthography mapping is not as standardized. We categorize the kinds of stylistic differences between 6 transcription versions, 4 human- and 2 ASR-produced, of 10 hours of African American English (AAE) speech. Focusing on verbatim features and AAE morphosyntactic features, we investigate the interactions of these categories with how well transcripts can be compared via word error rate (WER). The results, and overall analysis, help clarify how ASR outputs are a function of the decisions made by the training data's human transcribers.
- Abstract(参考訳): 自動音声認識(ASR)システムの性能を評価するのに使用される精度の一般的な測定基準は、ヒューマン・トランククリバー(英語版)と同様に、複数のエラー源を説明できる。
verbatimとnon-verbatimのような統計的差異は、トレーニングとテストデータセットの違いがある場合、ASRのパフォーマンス評価において重要な役割を果たす。
この問題は、音声から正書法へのマッピングが標準化されていないような、表現不足の品種の音声に対して合成される。
アフリカ・アメリカン・イングリッシュ (AAE) の発話10時間のうち, 人体と2人のASRが生成する6種類の書き起こしの文体的差異を分類した。
本研究では, 単語誤り率 (WER) を指標として, これらのカテゴリ間の相互作用について検討した。
結果と全体的な分析は、ASR出力がトレーニングデータの人間翻訳者による決定の関数であることを示すのに役立ちます。
関連論文リスト
- Enhancing Indonesian Automatic Speech Recognition: Evaluating Multilingual Models with Diverse Speech Variabilities [9.473861847584843]
本稿では,MMS(Massively Multilingual Speech)とWhisper(Whisper)という,最先端の音声認識モデルについて述べる。
インドネシア語音声データを様々な変動群で書き起こすモデルの予測能力について検討する。
論文 参考訳(メタデータ) (2024-10-11T14:07:07Z) - ASR Benchmarking: Need for a More Representative Conversational Dataset [3.017953715883516]
本研究では、大人同士の非構造的な会話からなる、TalkBankから派生した多言語会話データセットを提案する。
その結果,会話環境下でのテストでは,様々な最先端のASRモデルに対して顕著な性能低下がみられた。
論文 参考訳(メタデータ) (2024-09-18T15:03:04Z) - Reexamining Racial Disparities in Automatic Speech Recognition Performance: The Role of Confounding by Provenance [7.882996636086014]
自動音声認識(ASR)モデルとその使用法は公平かつ公平であることが重要である。
この研究は、現在の最先端のニューラルネットワークベースのASRシステムの性能を調べることによって、この格差の根底にある要因を理解することを目的としている。
論文 参考訳(メタデータ) (2024-07-19T02:14:17Z) - A Deep Dive into the Disparity of Word Error Rates Across Thousands of
NPTEL MOOC Videos [4.809236881780707]
英語のSsim9.8$Kの技術講義とインド・デモグラフィーの様々な部分を表すインストラクターによる書き起こしからなる8740時間の大規模音声データセットのキュレーションについて述べる。
私たちは、キュレートされたデータセットを使用して、インドの多様な話者の人口統計学的特徴にまたがる、YouTube Automatic CaptionsとOpenAI Whisperモデルのパフォーマンスの既存の格差を測定します。
論文 参考訳(メタデータ) (2023-07-20T05:03:00Z) - Using Natural Language Explanations to Rescale Human Judgments [81.66697572357477]
大規模言語モデル(LLM)を用いて順序付けアノテーションと説明を再スケールする手法を提案する。
我々は、アノテータのLikert評価とそれに対応する説明をLLMに入力し、スコア付けルーリックに固定された数値スコアを生成する。
提案手法は,合意に影響を及ぼさずに生の判断を再スケールし,そのスコアを同一のスコア付けルーリックに接する人間の判断に近づける。
論文 参考訳(メタデータ) (2023-05-24T06:19:14Z) - Investigating the Sensitivity of Automatic Speech Recognition Systems to
Phonetic Variation in L2 Englishes [3.198144010381572]
この研究は、複数のL2英語で音声変化を処理する方法を見つけるために、ASRシステムを探索する方法を実証する。
ASRの振る舞いは、類似した話し言葉を持つ話者間で体系的かつ一貫性があることが示されている。
論文 参考訳(メタデータ) (2023-05-12T11:29:13Z) - BLASER: A Text-Free Speech-to-Speech Translation Evaluation Metric [66.73705349465207]
エンドツーエンドの音声音声翻訳(S2ST)は、一般的にテキストベースのメトリクスで評価される。
本稿では,ASRシステムへの依存を回避するために,BLASERと呼ばれるエンドツーエンドS2STのテキストフリー評価指標を提案する。
論文 参考訳(メタデータ) (2022-12-16T14:00:26Z) - Sequence-level self-learning with multiple hypotheses [53.04725240411895]
我々は、自動音声認識(ASR)のためのアテンションベースシーケンス・ツー・シーケンス(seq2seq)モデルを用いた新しい自己学習手法を開発した。
従来の教師なし学習手法とは対照的に,我々はEmphmulti-task Learning(MTL)フレームワークを採用する。
実験の結果,本手法は,英語データのみを用いてトレーニングしたベースラインモデルと比較して,英文音声データのWERを14.55%から10.36%に削減できることがわかった。
論文 参考訳(メタデータ) (2021-12-10T20:47:58Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
ワンショット音声変換は、音声表現のアンタングルメントによって効果的に実現できる。
コンテンツエンコーディングにはベクトル量子化(VQ)を使用し、トレーニング中に相互情報(MI)を相関指標として導入する。
実験結果は,提案手法が効果的に非絡み合った音声表現を学習する際の優位性を反映している。
論文 参考訳(メタデータ) (2021-06-18T13:50:38Z) - LeBenchmark: A Reproducible Framework for Assessing Self-Supervised
Representation Learning from Speech [63.84741259993937]
膨大なラベルのないデータを用いた自己教師付き学習(SSL)は、画像処理と自然言語処理に成功している。
最近の研究では、音声からSSLも調べた。
音声からSSLを評価する再現可能なフレームワークであるLeBenchmarkを提案する。
論文 参考訳(メタデータ) (2021-04-23T08:27:09Z) - Improving Readability for Automatic Speech Recognition Transcription [50.86019112545596]
我々は、可読性のためのASRポストプロセッシング(APR)と呼ばれる新しいNLPタスクを提案する。
APRは、ノイズの多いASR出力を、話者の意味を保ちながら、人間や下流タスクのための読みやすいテキストに変換することを目的としている。
我々は,いくつかのオープンソースモデルと適応型事前学習モデルに基づく微調整モデルと,従来のパイプライン手法との比較を行った。
論文 参考訳(メタデータ) (2020-04-09T09:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。