論文の概要: Fast algorithms to improve fair information access in networks
- arxiv url: http://arxiv.org/abs/2409.03127v2
- Date: Wed, 19 Feb 2025 18:36:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:56:25.466825
- Title: Fast algorithms to improve fair information access in networks
- Title(参考訳): ネットワークにおける公正情報アクセス改善のための高速アルゴリズム
- Authors: Dennis Robert Windham, Caroline J. Wendt, Alex Crane, Madelyn J Warr, Freda Shi, Sorelle A. Friedler, Blair D. Sullivan, Aaron Clauset,
- Abstract要約: ネットワーク上で$k$のシードノードを選択することで、アクティベーションの最小確率を最大化する問題を考える。
我々は,確率推定を必要としない新しいスケーラブルアルゴリズムを設計し,評価する。
6ドルドメインから引き出された174ドルのネットワークのベンチマークコーパスを新たに提供します。
- 参考スコア(独自算出の注目度): 8.174758604182268
- License:
- Abstract: We consider the problem of selecting $k$ seed nodes in a network to maximize the minimum probability of activation under an independent cascade beginning at these seeds. The motivation is to promote fairness by ensuring that even the least advantaged members of the network have good access to information. Our problem can be viewed as a variant of the classic influence maximization objective, but it appears somewhat more difficult to solve: only heuristics are known. Moreover, the scalability of these methods is sharply constrained by the need to repeatedly estimate access probabilities. We design and evaluate a suite of $10$ new scalable algorithms which crucially do not require probability estimation. To facilitate comparison with the state-of-the-art, we make three more contributions which may be of broader interest. We introduce a principled method of selecting a pairwise information transmission parameter used in experimental evaluations, as well as a new performance metric which allows for comparison of algorithms across a range of values for the parameter $k$. Finally, we provide a new benchmark corpus of $174$ networks drawn from $6$ domains. Our algorithms retain most of the performance of the state-of-the-art while reducing running time by orders of magnitude. Specifically, a meta-learner approach is on average only $20\%$ less effective than the state-of-the-art on held-out data, but about $75-130$ times faster. Further, the meta-learner's performance exceeds the state-of the-art on about $20\%$ of networks, and the magnitude of its running time advantage is maintained on much larger networks.
- Abstract(参考訳): ネットワーク上で$k$のシードノードを選択することで、これらのシードから始まる独立したカスケードの下でのアクティベーションの最小限の確率を最大化する。
このモチベーションは、ネットワークの最も有利なメンバーでさえ、情報にアクセスしやすくすることで公正性を促進することである。
我々の問題は、古典的な影響の最大化の目的の変種と見なすことができるが、解くのがやや難しく、ヒューリスティックスのみが知られている。
さらに、これらの手法のスケーラビリティは、繰り返しアクセス確率を見積もる必要性により、著しく制約される。
我々は,確率推定を必要としない新しいスケーラブルアルゴリズムを設計し,評価する。
最先端技術との比較を容易にするために、我々はさらに3つの貢献を行い、より広い関心を持つかもしれない。
実験評価に使用されるペアワイズ情報伝達パラメータを選択するための原理的手法と,パラメータ$k$の値の範囲でアルゴリズムの比較を可能にする新しい性能指標を提案する。
最後に、6ドルのドメインから引き出された174ドルのネットワークからなる新しいベンチマークコーパスを提供する。
我々のアルゴリズムは最先端の性能を保ちながら、実行時間を桁違いに減らしている。
具体的には、メタラーナーのアプローチは、最先端のデータよりも平均20~130ドル低いが、約75~130ドル高速である。
さらに、メタラーナーの性能は、約20 %のネットワークで最先端のネットワークを超え、そのランニングタイムのアドバンテージの規模は、はるかに大きなネットワークで維持される。
関連論文リスト
- Learning State-Augmented Policies for Information Routing in
Communication Networks [92.59624401684083]
我々は,グラフニューラルネットワーク(GNN)アーキテクチャを用いて,ソースノードの集約情報を最大化する,新たなステート拡張(SA)戦略を開発した。
教師なし学習手法を利用して、GNNアーキテクチャの出力を最適情報ルーティング戦略に変換する。
実験では,実時間ネットワークトポロジの評価を行い,アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2023-09-30T04:34:25Z) - ParlayANN: Scalable and Deterministic Parallel Graph-Based Approximate
Nearest Neighbor Search Algorithms [5.478671305092084]
本稿では,ParlayANNについて紹介する。ParlayANNは決定論的および並列グラフに基づく近接探索アルゴリズムのライブラリである。
我々は、数十億のデータセットにスケールする4つの最先端グラフベースのANNSアルゴリズムに対して、新しい並列実装を開発する。
論文 参考訳(メタデータ) (2023-05-07T19:28:23Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
ニューラルネットワーク推論タスクのOOD一般化について検討する。
目標は、ディープニューラルネットワークを使用して入出力ペアからアルゴリズムを学ぶことである。
論文 参考訳(メタデータ) (2022-11-01T18:33:20Z) - Learning with Differentiable Algorithms [6.47243430672461]
この論文は、古典的なアルゴリズムとニューラルネットワークのような機械学習システムを組み合わせることを探求している。
この論文はアルゴリズムの監督という概念を定式化し、ニューラルネットワークがアルゴリズムから、あるいは、アルゴリズムと連動して学ぶことを可能にする。
さらに、この論文では、微分可能なソートネットワーク、微分可能なソートゲート、微分可能な論理ゲートネットワークなど、微分可能なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-01T17:30:00Z) - On the Effectiveness of Neural Ensembles for Image Classification with
Small Datasets [2.3478438171452014]
本稿では,クラスごとのラベル付き例数件による画像分類問題に着目し,比較的小さなネットワークのアンサンブルを用いてデータ効率を向上させる。
比較的浅いネットワークをアンサンブルすることは、小さなデータセットから学ぶための現在の最先端のアプローチよりも一般的に優れている、単純だが効果的な手法であることを示す。
論文 参考訳(メタデータ) (2021-11-29T12:34:49Z) - DAAS: Differentiable Architecture and Augmentation Policy Search [107.53318939844422]
この研究は、ニューラルネットワークとデータ拡張のカップリングの可能性を検討し、それらを共同で検索する効果的なアルゴリズムを提案する。
CIFAR-10では97.91%、ImageNetデータセットでは76.6%の精度で97.91%の精度を達成し、検索アルゴリズムの優れた性能を示している。
論文 参考訳(メタデータ) (2021-09-30T17:15:17Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
ドメイン適応型ハッシュ学習はコンピュータビジョンコミュニティでかなりの成功を収めた。
UDAHと呼ばれるネットワークのための教師なしドメイン適応型ハッシュ学習手法を開発した。
論文 参考訳(メタデータ) (2021-08-20T12:09:38Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
我々は,情報理論に根ざし,計算神経科学に発達した効率的な符号化原理を採用することを提案する。
スパース符号化は出力信号のエントロピーを効果的に最大化できることを示す。
公開画像分類データセットを用いた実験により,提案アルゴリズムでスクラッチから学習した構造を用いて,最も優れた専門家設計構造に匹敵する分類精度が得られることを示した。
論文 参考訳(メタデータ) (2021-05-27T12:27:24Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
firefly neural architecture descentは、ニューラルネットワークを漸進的かつ動的に成長させるための一般的なフレームワークである。
ホタルの降下は、より広く、より深くネットワークを柔軟に成長させ、正確だがリソース効率のよいニューラルアーキテクチャを学習するために応用できることを示す。
特に、サイズは小さいが、最先端の手法で学習したネットワークよりも平均精度が高いネットワークを学習する。
論文 参考訳(メタデータ) (2021-02-17T04:47:18Z) - Network Support for High-performance Distributed Machine Learning [17.919773898228716]
学習ノード(計算を行う)と情報ノード(データを提供する)の両方をキャプチャするシステムモデルを提案する。
次に,学習課題を完了させるために,学習ノードと情報ノードが協調して行うべき課題と,実行すべきイテレーション数を選択する問題を定式化する。
我々はDoubleClimbというアルゴリズムを考案し、1+1/|I|競合解を見つけることができる。
論文 参考訳(メタデータ) (2021-02-05T19:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。